- Курс лекций по дисциплине "Физколлоидная химия" (28 лекций)
 - Глоссарий
- Тест промежуточного самоконтроля «Физическая химия»
- Тест промежуточного самоконтроля «Коллоидная химия»
- Учебно-методическое пособие по физической химии и заданиями для выполнения контрольной работы для студентов ЗДО
- Учебно-методическое пособие по коллоидной химии и заданиями для выполнения контрольной работы для студентов ЗДО
- Вопросы для подготовки к экзамену по дисциплине "Физколлоидная химия"
- Виртуальный лабораторный практикум (выполнен в инструментальной моделирующей среде Stratum-2000)
- Мультимедийное введение в предмет «Физическая химия»

Электронный УМКД имеет дополнительное меню, обеспечивающее выход на сайт университета, сайт кафедры, электронную библиотеку университета, глоссарий основных предметных терминов и обратную связь с лектором (email), ведущим дисциплину.

Современная форма подачи учебнометодического материала (мультимедиа и интернет-технологии) решает задачу более глубокого освоения предмета за счет его доступности для широкого круга пользователей и поднимает рейтинг предмета.

ФИЗИЧЕСКАЯ ХИМИЯ. ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА

(электронный учебник)

Данилин В.Н., Боровская Л.В., Шурай П.Е. Кубанский государственный технологический университет Краснодар, Россия

Электронный учебник (ЭУ) "Физическая химия. Химическая термодинамика " рассчитан на студентов дневной и заочной форм обучения технологических специальностей. Цель учебника дать краткие исчерпывающие сведения о таком важном разделе физической химии, как химическая термодинамика.

ЭУ соответствует ГОСТ по содержанию учебному плану специальностей технологического направления и типовым учебным программам дисциплины "Физколлоидная химия".

ЭУ создан на основе современных информационных технологий, с использованием свободно распространяемых средств мультимедиа и интернет-технологий, обеспечивающих функционирование как в масштабах университета, так и использование индивидуальными потребителями в процессе дистанционного обучения;

представлен файлами, набранными в кодировке Windows 1251, в формате HTML, объем – 38 Мб.

Основу учебного материала составляет гипертекст, разделенный на 2 главы (с 6 подглавами в каждой), соответствующие последовательному изложению теоретического материала, содержит мультимедийное введение в предмет «Физическая химия» (30 мин), глоссарий основных терминов, список рекомендуемой литературы, 1 тест с 20 вопросами для самоконтроля.

ЭУ имеет гибкую систему навигации, связывающую между собой все структурные единицы учебника и позволяющую быстро находить нужный раздел, термин или литературный источник.

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ОРГАНИЧЕСКОЙ ХИМИИ

(электронное учебное пособие)

Пимнева Л.А.

Электронное пособие по органической химии представляет собой лекционный курс, сопровождающийся параллельно лабораторными работами. Лабораторные работы связаны с основными положениями, излагаемыми в лекционном материале, и способствуют более прочному усвоению материала.

Целью данного пособия является ознакомление студентов на практике с характерными реакциями различных классов органических соединений.

Качественные реакции, выполняемые студентами, позволяют обнаружить вещество по характерному запаху, окраске, выпадению осадка, растворению осадка и др. При выполнении работ студенты знакомятся с различными методами исследования, а также со способами выделения и очистки органических веществ. К каждой работе даны методические рекомендации, а также вопросы для самоконтроля.

По окончании изучения курса органической химии студент проверяет свои усвоенные знания по предложенным тестам.

ВЗАИМОДЕЙСТВИЯ В РАСТВОРАХ ЭЛЕКТРОЛИТОВ: МОДЕЛИРОВАНИЕ СОЛЬВАТАЦИОННЫХ ПРОЦЕССОВ, РАВНОВЕСИЙ В РАСТВОРАХ ПОЛИЭЛЕКТРОЛИТОВ И МАТЕМАТИЧЕСКОЕ ПРОГНОЗИРОВАНИЕ СВОЙСТВ ХИМИЧЕСКИХ СИСТЕМ

(монография)

Танганов Б.Б.

В монографии проф. Танганова Б.Б. «Взаимодействия в растворах электролитов: моделирование сольватационных процессов, равновесий в растворах полиэлектролитов и математическое прогнозирование свойств химических систем» (Издательство «Академия Естествознания».-Москва, 2009.-141 с.) разработаны и представлены теоретические модели сольватационных процессов в растворах электролитов, оценены сольватные числа, массы и размеры сольватированных наночастиц; разработаны модельные представления равновесий в растворах полиэлектролитов и экспериментально определены термодинамические константы одно-, двух-, трех- и четырехфункциональных поликислот и полиоснований; предлагаются концепции математического моделирования многопараметрических соотношений (метод многоуровневого моделирования свойств химических систем).

В растворах электролитов протекают весьма непростые взаимодействия растворенного вещества с растворителем, приводящие в зависимости от их свойств (кислотно-основная сила электролита и растворителя, дипольные моменты и полярность, диэлектрическая проницаемость, ионное произведение растворителя и т.д.) к образованию в одних случаях молекулярных сольватов. в других – к диссоциации сольватированных ионов, а в некоторых случаях – преимущественно к образованию ассоциированных частиц в виде ионных пар, тройников или еще более сложных ассоциатов. Таким образом, можно предположить, что в электролитных растворах нет свободных ионов и молекул.

Предложена электростатическая концепция сольватационных процессов с последующей теоретической оценкой сольватных чисел, размеров и масс сольватированных наночастиц в растворителях, которая может представлять интерес в мембранной технологии опреснения океанской и морской воды.

Проблема определения термодинамических констант равновесия при совместной нейтрализации поликислот или полиоснований в растворителях разной природы все еще остается острой, так как в этих случаях можно говорить лишь о брутто-константах. Не было полной ясности с изменением среднеионного коэффициента активности при высоких концентрациях.

Автором разработаны и внедрены теоретические модели и уравнения:

- позволяющие по логарифмическим диаграммам учитывать концентрации всех частиц в растворе, коренным образом влияющие на ионную силу и, таким образом, объективно - на величины коэффициентов активности;
- обосновывающие изменение коэффициентов активности в результате инверсии процессов в растворе при высоких концентрациях;
- способствующие наиболее объективной оценке термодинамических констант диссоциации моно-, ди-, трех- и четырехфункциональных кислот и оснований (например, поликарбоновых кислот и полиаминов) во всех буферных областях.

Мир по своей природе сложен и многомерен. Ситуации в природе, в науках и обществе, когда некоторое явление полностью описывается одной переменной, чрезвычайно редки.

Это означает, что многие показатели, даже не будучи связанные между собой формализованными алгоритмами, тем не менее изменяются в динамике согласованно. Очевидно, что если некая система находится в состоянии равновесия, то отдельные ее элементы не могут действовать хаотично. Можно добавить, что в природе (равно как и во всех естественных науках), хотим мы этого или нет, всё взаимосвязано со всем.

В работе теоретически обоснованы, разработаны и апробированы в качестве базисных параметров термохимические (температура кипения, мольная теплота парообразования и др.), кинетические (вязкость и др.), электрические (дипольный момент и др.) свойства и молекулярные характеристики (сумма длин химических связей в молекуле растворителя, сумма электронов и др.), по существу легко определяемые справочные величины. Данная концепция дает удовлетворительное соответствие оцененных многоуровневого моделирования (ММУМ) величин с реальными экспериментальными значениями, независимо от природы и класса химических веществ и сопровождается пакетом авторских компьютерных программ.

Применимость ММУМ подтверждена прогнозированием роста камней в печени партии крыс до летального исхода при холелитиазе, а также выдачей прогностической картины накопления алкалоидов в лекарственных растениях в различных регионах

Книга содержит 141 страницу, в том числе 45 таблиц, 28 рисунков, 5 компьютерных программ в виде отдельных приложений.

Монография может быть полезна преподавателям, аспирантам, магистрантам химических и химико-технологических специальностей ВУЗов, научным работникам академических институтов.

ХИМИЯ ОКРУЖАЮЩЕЙ СРЕДЫ (электронное учебное пособие)

Топалова О.В., Пимнева Л.А.

В электронном пособии представлены основные физико-химические процессы, протекающие в атмосфере, гидросфере и почвенном слое; распространение, трансформация и накопление загрязненных веществ в окружающей среде.

Большинство промышленных предприятий в процессе деятельности выбрасывают в окружающую среду потоки загрязняющих веществ, сточных вод, отходящих газов, твердых, жидких и газообразных отходов, которые необходимо утилизировать.