РЕШЕНИЕ ЗАДАЧИ О СИНТЕЗЕ ФОРМ БОЙКОВ УДАРНЫХ МЕХАНИЗМОВ ДЛЯ ПОЛУЧЕНИЯ ЗАДАННОГО УДАРНОГО ИМПУЛЬСА

А.Е. Бурда, Л.Т. Дворников

Сибирский государственный индустриальный университет г. Новокузнецк

Для рационального использования энергии удара необходимо обеспечение формирования в волноводе импульса оптимальной формы, при которой его амплитуда начинается с некоторого определенного значения и возрастает с интенсивностью, соответствующей интенсивности роста сопротивляемости разрушаемой среды внедрению. Решение проблемы возможно по пути, согласно которому по результату оценки физико-механических свойств обеспечиваемого объекта, который предстоит разрушать, определяется зависимости усилий, возникающих в волноводе при ударе по нему бойком, от времени. Эта закономерность будет отражать форму упругой волны деформации, по которой в дальнейшем возможно синтезирование геометрии ударяющего тела. Решение такой задачи может быть достигнуто посредством применения графоаналитического метода в следующей последовательности.

Изначально необходимо задать зависимость усилий F, возникающих в волноводе после соударения с бойком, в виде некоторой функции от времени t.

F(t)=f(t)

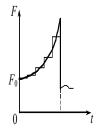


Рис. График зависимости F(t)

В результате проведенных исследований было установлено, что каждая последующая сила F_{2i-1} зависит только от одной площади поперечного сечения бойка S_i . Последний этап расчета — это поиск гладкой кривой, являющийся образующей боковой поверхности бойка как тела вращения, который в результате синтеза представляет собой многоступенчатый цилиндр, аппроксимирующий эту гладкую кривую.

АНАЛИЗ ПОЛНОГО МНОГООБРАЗИЯ ПРОСТРАНСТВЕННЫХ ВИНТОВЫХ МЕХАНИЗМОВ

В.К. Гнездилов, Л.Т. Дворников

Сибирский государственный индустриальный университет г. Новокузнецк

Пространственные винтовые механизмы (ПВМ) описываются структурной формулой Добровольского В.В. [1] W=2n-p5.

В таких механизмах могут использоваться три вида кинематических пар пятого класса, допускающих единственное независимое относительное движение: винтовое (Вт), поступательное (Пс) и поворотное (Пв), покажем все возможные комбинации этих пар для трехзвенного механизма.

Однозвенных групп нулевой подвижности (W=0) с двумя кинематическими парами можно создать всего четыре, а именно: а) Вт-Вт, б) Вт-Пс, в) Вт-Пв, г) Пс-Пв.

Однако, что касается групп Пс-Пс и Пв-Пв, то они вырождаются в механизмы с подвижностью W=1. Из четырех групп один из вариантов а) симметричен: Вт-Вт, три других не симметричны, т.е. к ведущему звену они могут присоединяться двояким образом.

Поскольку ведущее звено может быть соединено со стойкой в три различные пары ,то присоединяя к ним групы нулевой подвижности получим 21 вариант кинематических цепей:

Ни одно из звеньев простейшего ПВМ не должно иметь в своем составе обе пары Пв или Пс, при этом следует учитывать, что к стойке, т.е. неподвижному звену, высказанное условие относится аналогично подвижным звеньям. Отбраковывая такие варианты (выделены курсивом), в итоге получим 13 работоспособных механизмов.

Полученные механизмы можно объединить в четыре группы: 1) механизм содержащий в своем составе три винтовые КП: Вт-Вт-Вт; 2) если одна из пар механизма является поступательной, то возможно создать 3 варианта механизмов: Пс-Вт-Вт, Вт-Пс-Вт и Вт-Вт-Пс; 3) если одна из пар поворотная, то возможно создать также 3 варианта: Пв-Вт-Вт, Вт-Пв-Вт и Вт-Вт-Пв; 4) если в ПВМ используются все три вида кинематических пар, то таких механизмов будет 6: Вт-Пс-

Вт-Вт-Вт	Вт-Вт-Пс	Вт-Пс-Вт	Вт-Вт-Пв	Вт-Пв-Вт	Вт-Пс-Пв	Вт-Пв-Пс
Пв-Вт-Вт	Пв-Вт-Пс	Пв-Пс-Вт	Пв-Вт-Пв	Пв-Пв-Вт	Пв-Пс-Пв	Пв-Пв-Пс
Пс-Вт-Вт	Пс-Вт-Пс	Пс-Пс-Вт	Пс-Вт-Пв	Пс-Пв-Вт	Пс-Пс-Пв	Пс-Пв-Пс.

Пв, Вт-Пв-Пс, Пв-Вт-Пс, Пв-Пс-Вт, Пс-Вт-Пв и Пс-Пв-Вт.

Перечисленные трехзвенные механизмы достаточно хорошо известны и применяются в технике в различных вариантах, хотя, систематического исследования никем ра-

нее не проводилось, общая теория необходима для синтеза более сложных структур, включающих в себя три и более подвижных звена.

1. Добровольский В.В. Теория механизмов, М. 1951г