УДК 622.342.1

ИЗУЧЕНИЕ ПЕРСПЕКТИВНЫХ И ЭКОЛОГИЧЕСКИ БЕЗОПАСНЫХ РАСТВОРИТЕЛЕЙ БЛАГОРОДНЫХ МЕТАЛЛОВ ПРИ ПЕРЕРАБОТКЕ ТРУДНООБОГАТИМОГО СЫРЬЯ

Гронь В.А., Коростовенко В.В., Капличенко Н.М., Галайко А.В.

ФГАОУ ВПО «Сибирский федеральный университет», Красноярск, e-mail:natkapl@mail.ru

В работе рассмотрены наиболее перспективные направления извлечения тонкого золота из руд коры выветривания **c** высоким содержанием глинистых составляющих. Исследования проводили на ряде растворителей. Наибольший практический интерес представляет известково-серный реагент. Определены технологические параметры выщелачивания перспективных месторождений **c** извлечением золота до 97-98 %.

Ключевые слова: глинистые, сырье, благородные металлы, растворители, цианирование, извлечение, выщелачивание

STUDY OF PROSPECTIVE AND ENVIRONMENTALLY SAFE SOLVENT OF PRECIOUS METALS FOR PROCESSING OF REFRACTORY RAW MATERIAL

Gron V.A., Korostovenko V.V., Kaplichenko N.M., Galaiko A.V.

FSAEI «Siberian Federal University», Krasnoyarsk, e-mail: natkapl@mail.ru

The paper gives the most promising ways of fine gold recovery from ore of weathering crust with high content of clay components. A number of solvents was used in the study. Lime-sulfur reagent was of greatest practical interest. Technological parameters of leaching promising deposits were determined for gold recovery up to 97-98%.

Keywords: clay, raw material, precious metals, solvent, cyanide leaching, extraction, leaching

Альтернативные цианистым соединениям реагенты, хорошо зарекомендовавшие при извлечении золота, используются лишь в опытном масштабе. Основными преимуществами цианистых соединений перед другими растворителями золота являются высокая селективность по отношению к благородным металлам, низкий расход реагентов, высокое извлечение золота в раствор и последующее его выделение из цианистых растворов, малая коррозионная активность среды.

При несомненных достоинствах процесс цианирования характеризуется существенными недостатками. Основным технологическим недостатком цианистого процесса является его высокая продолжительность. С точки зрения экологии к недостаткам относится и чрезвычайно высокая токсичность цианидов щелочных металлов и продуктов их взаимодействия с рудами. Для ряда золотодобывающих регионов высокие затраты на природоохранные мероприятия является нерентабельной разработка перспективных месторождений. Проблема обезвреживания сточных вод обогатительных фабрик до конца не решена.

В настоящее время выявлен достаточно широкий круг растворителей, которые рассматриваются в качестве альтернативы цианистым солям в процессах извлечения золота и серебра из рудного сырья.

Изыскание и оценка новых растворителей благородных металлов производится не только из экологических соображений, но

также преследует и другие цели, например, возможность переработки золото- и серебросодержащих руд (концентратов), трудно поддающихся цианистому выщелачиванию. Применительно к такого типа рудам интерес представляют следующие растворители: тиосульфаты, тиокарбамид, а также известково-серный реагент.

Исследования проводились в лабораторных условиях по растворению благородных металлов из различных типов руд новых месторождений Приангарья, которые состоят из кварц-слюдистых сланцев, а также представлены слюдистыми микрокварцитами и турмолинизированы с жилами кварца.

В исследованных рудах рудные минералы присутствуют в незначительных количествах — от 0,50 до 4,2%. Содержание сульфидов колеблется от 0,2 до 5,0%. В составе сульфидов преобладают пирротин, пирит и марказит, к встречающимся в незначительных количествах относятся халькопирит и арсенопирит, в единичных вкраплениях содержатся сфалерит, висмут, галенит.

Среди оксидов наиболее распространены ильменит и рутил, в меньшей степени магнетит и гематит. Руды практически не несут следов окисления. Среди нерудных минералов преобладают кварц, биотит, мусковит. Минералами-примесями являются графит, циркон, апатит [1].

Химический состав ряда проб свидетельствует о силикатном характере руд (SiO2 от 66,4 до 81,9%) при незначительном содержании углекислоты и серы, преобладании калия над натрием.

Содержание примесей не превышает, %: Pb - 0.02; Zn - 0.1; Cu - 0.02; Zn - 0.03; Zn -

Формы включений золота разнообразны. Чаще золото встречается в сростках с кварцем, в отдельных пробах – со слюдой, пиритом, висмутом, а также в глинистых составляющих пробы.

Исследуемые руды представляют собой несколько разновидностей и состоят из рыхлого обломочного материала сероватобурого цвета. По текстурно-структурным особенностям они многоминеральны и имеют существенное различие по своему составу, размерам обломков и горных пород: от грубообломочной 7-160 мм в поперечнике до пиелитовой с размером частиц менее 0,01 мм.

Количественные соотношения обломков и песчано-глинистой связующей массы в рудах различны и составляют 20-88,5 и 10,5-79% соответственно. Состав обломков горных пород существенно отличается друг от друга. В некоторых пробах присутствуют обломки гранитов, амфиболитов, кристаллических сланцев, диабазов, в незначительном количестве находятся обломки мраморизированных известняков, песчаных кварцитов.

В исследуемом материале преобладают мраморизированые известняки, песчаники, глинистые сланцы, кварциты, в незначительном количестве встречаются корки лимонита. Большинство обломков руд выветрены и на поверхности имеются ячейки, выемки, углубления, заполненные глинистым веществом.

Руды представлены метаморфизированными горными породами, основную часть которых составляют обломки серицитхлоритовых сланцев, а также единичные окатанные обломки жильного кварца. Сланцы избирательно пропитаны лимонитом с наличием корок гематита, тонких кварцевых прожилок, в которых присутствуют скопления лимонита и бурой глины. Отмечаются единичные вкрапления пирита и халькопирита. В рудах присутствуют обломки желто-бурой, красноватой плотной глинистой коры выветривания, сохранившей в отдельных случаях текстурно-структурные особенности первичных сланцев.

Обломочный материал покрыт пленкой глины, пропитанной гидроксидами железа (глинистая рубашка), что придает руде се-

ровато-охряно-бурую окраску. Основным ценным компонентом глинистых пород выступает золото, размер частиц которого составляет 1-10 мкм.

Характерной особенностью сырья является то, что количество золота, находящегося в свободном состоянии, не превышает 5%. В основном оно связано с лимонитом, а также с сильно окисленными сульфидами, образуя включения между гематитом и сланцами [2].

Переработка таких руд на сегодняшний день является актуальной проблемой. Исходя из анализа существующих методов переработки труднообогатимого сырья, исследования проводились с использованием перспективных растворителей благородных металлов на рудах новых месторождений Приангарья, различной крупности, а также некондиционных (гравитационных и флотационных) концентратах обогатительных фабрик.

Тиокарбамидное выщелачивание привлекает наибольшее внимание исследователей. Тиокарбамид (тиомочевина) CS(NH₂), представляет собой кристаллический порошок, хорошр растворимый в воде. Для выщелачивания золота приготовляют раствор, содержащий 0,5-2% CS(NH₂); 1-3% H,SO, и 0,3-0,4% Fe,(SO,)3. Сульфат оксида железа является окислителем. Руды с заметным содержанием кислоторастворимых минералов перед выщелачиванием тиомочевиной необходимо подвергать кислотной обработке с последующей промывкой водой, иначе эти минералы вызовут повышенный расход тиомочевины и, перейдя в раствор, замедлят растворение золота. Обработку тиомочевиной проводили при температуре не выше 20-25 °C во избежание чрезмерного разложения растворителя.

Тиомочевинные пульпы отличаются трудной сгущаемостью и фильтруемостью, поэтому при их обработке необходимо использовать полиакриламид и другие флокулянты.

По сравнению с цианированием обработка руд тиомочевиной имеет следующие преимущества: более быстрое выщелачивание золота, меньшая токсичность тиомочевины и более полное извлечение золота из глинистых руд. Зарубежные исследователи полагают, что тиомочевина как растворитель благородных металлов наиболее перспективна для кучного и подземного выщелачивания.

С преимуществом тиомочевинного выщелачивания имеются недостатки:

- относительно высокая стоимость и дефицитность реагента;
- потребность в кислотостойкой аппаратуре;

- значительный расход кислоты (120-180 кг/т H_2SO_4);

– разложение (окисление) тиомочевины, что приводит к увеличению расхода этого растворителя, а также отмывки кеков до нейтральной среды.

При использовании тиосульфатных растворов ($Na_2S_2O_3$ 36 г/л; окислитель — $CuSO_4$ 4 г/л; регулятор среды — NH_4OH 10 г/л) присутствие в исходном материале соединений сурьмы, меди, мышьяка и некоторых других минеральных примесей не оказывает заметного депрессирующего влияния на золото при выщелачивании. Для достижения приемлемых показателей извлечения золота в растворы необходимо повышение температуры до 100-130 °C. Извлечение золота в раствор составляет до 95-97 %.

Как показали последующие исследования тиосульфатное выщелачивание может быть осуществлено и при более низких температурах за счет значительного разбавления пульпы (до Ж:Т=10:1), увеличение концентрации растворителя или применения к рудам совмещенного процесса: выщелачивание — сорбция золота из пульпы ионообменными смолами. Однако в этих условиях резко возрастают расход реагентов и общие затраты на обработку руды. Указанные обстоятельства существенно затрудняют использование данного растворителя в технологических целях [3].

Одним из направлений совершенствования указанной технологии является использование известково-серного реагента, получаемого путем растворения серы в водной суспензии гидроксида кальция. Реагент нетоксичен и экологически безопасен.

Авторы исследовали труднообогатимые руды приведённого выше состава.

Была изучена возможность извлечения золота раствором известково-серного реагента. Концентрацию серы в растворе изменяли от 12,5 до 100 г/л, а концентрацию гидроксида кальция в водной суспензии, в которой растворяли серу, от 100 до 200 г/л. Процесс выщелачивания проводили при комнатной температуре в течение 24 ч, отношение Ж:Т= 5:1.

Полученные результаты выщелачивания представлены на рис. 1, 2.

Оптимальным составом известково-серного реагента является концентрация серы от 50 до 100 г/л, а концентрация гидроксида кальция от 100 до 200 г/л в зависимости от вида перерабатываемого сырья. Время выщелачивания составило от 6 до 8 ч. При увеличении времени выщелачивания результаты не изменились. Установлено, что извлечение золота в раствор практически не зависит от крупности материала и составляет 97-98%.

Отмывка кеков водой позволяет снизить до минимума потери серы, гидроксида кальция в хвостах и улучшить в целом показатели предлагаемой технологии в экологическом аспекте.

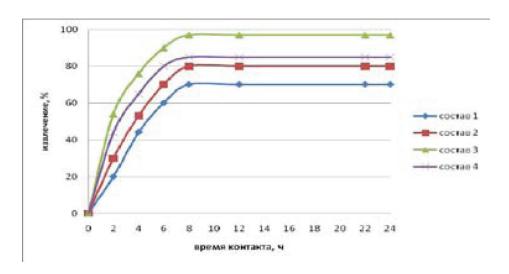


Рис. 1. Зависимость извлечения золота от состава растворов. Состав растворов: 1-12,5 г/л S+100 г/л Ca(OH) ;: 2-25 г/л S+100 г/л Ca(OH) ;: 3-50 г/л S+100 г/л Ca(OH) ;: 4-100 г/л S+100 г/л Ca(OH) ;

Рис. 2. Зависимость извлечения золота от состава растворов. Состав растворов: 1-12.5 г/л S+200 г/л $Ca(OH)_2$; 2-25 г/л S+200 г/л $Ca(OH)_2$; 3-50 г/л S+200 г/л $Ca(OH)_2$; 4-100 г/л S+200 г/л $Ca(OH)_2$

Данные химического анализа по вещественному составу кеков свидетельствуют об избирательном характере действия реагента на исходную руду. Реагент растворяет золото, не вступая в химическое взаимодействие с другими находящимися в исходной руде элементами (серой, мышьяком, титаном и др.), которые переходят в отвальные кеки.

Результаты анализов показывают, что при содержании элементарной серы в исходной руде до 0,8% ее содержание в отвальных кеках изменяется от 0,14 до 1,14%, составляя в среднем 0,64%, т.е. фактически соответствует содержанию в исходном сырье.

Из этого следует, что в процессе выщелачивания не происходит перехода серы из технологического реагента в виде сульфат-ионов в отвальные кеки. При этом кеки не являются экологически вредными и могут складироваться как некондиционные руды на специально подготовленных площадках [5].

Вывод: предложенная технология выщелачивания золота обладает несомненным преимуществом по сравнению с циантехнологией как в технологическом, так и в экологическом аспектах, поскольку исключает

из процесса переработки руды такой элемент, как складирование и хранение хвостов цианирования, необходимость разработки особых мер безопасности при работе с цианидами. В экологическом плане данная технология не представляет опасности для окружающей среды.

Список литературы

- 1. Коростовенко В.В., Гронь В.А., Капличенко Н.М. Особенности вещественного состава золотосодержащих руд Енисейского и Южно-Енисейского районов и опробование способов их переработки // Цветные металлы-2011: Сб. матер. 3 Междунар. конгр.(Красноярск, 6-10 сент. 2011 г.). Красноярск, 2011. С. 255–259.
- 2. Коростовенко В.В., Гронь В.А., Степанов А.Г. Возможности переработки золотоносного труднообогатимого глинистого сырья // Техника и технология, № 5(7). Красноярск: СФУ. -2012. -C. 771-776
- 3. Коростовенко В.В., Гронь В.А., Капличенко Н.М. Изыскание и оценка новых перспективных растворителей благородных металлов из глинистых труднообогатимых песков // Цветные металлы-2012: Сб. матер. 4 Междунар. конгр. Красноярск, 2012. С. 255–259.
- 4. Пат. 1788768 Российская Федерация, МПК С22ВЗ/04. Способ извлечения золота из золотосодержащих продуктов выщелачиванием / В.А. Гронь, 1993.
- 5. Гронь В.А. Гидрометаллургическая переработка золотосодержащих руд Енисейского и Южно-Енисейского районов // Цветные металлы. 2000. № 8. С. 113–114.