	Время простоев при выполнении операций, мин										
Марка авто- мобиля	Снятие		Демонтаж		Монтаж		Накачивание		Установка колеса		Экономия времени
	до	после	до	после	до	после	до	после	до	после	
ЗИЛ	17,5	8	13,4	-	6,8	-	7,1	-	12,6	6	13,4
MA3	12,9	8	13,4	-	6,0	-	6,7	-	9	6	34
КРАЗ	20,7	15	18,6	-	6,3	-	7,2	-	17,5	16	38,3
КАМА3	10,9	8	13,4	-	6,0	-	6,5	-	9,4	6	32,2

Анализ простоев автомобилей

Список литературы

- 1. Скрыпников, А.В. Повышение надежности технического состояния парка подвижного состава, специализирующегося на перевозке лесных грузов [Текст]: монография / А.В. Скрыпников, Е.В. Кондрашова, К.А. Яковлев; ФГБОУ ВПО «ВГЛТА». М.: Флинта; Наука, 2012. 152 с.
- 2. Скрыпников, А.В. Повышение эффективности технической эксплуатации машин лесного комплекса [Текст]: монография / А.В. Скрыпников, Е.В. Кондрашова, А.И. Урюпин, К.А. Яковлев, ФГБОУ ВПО «ВГЛТА». Воронеж, 2012. Деп. в ВИНИТИ 28.05.2012 г. № 258-В2012.

ЭНЕРГОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ЗАЩИТНО-ДЕКОРАТИВНЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯХ ИЗ БЕТОНА МЕТОДОМ ПЛАЗМЕННОЙ ОБРАБОТКИ

¹Дюмина П.С., ¹Бессмертный В.С., ¹Соколова О.Н., ¹Линник Л.О., ²Бондаренко Н.И.

¹Белгородский университет кооперации, экономики и права, Белгород;

²Белгородский государственный технологический университет им. В.Г. Шухова, Белгород, e-mail: tkf-dekan@bukep.ru

В настоящее время плазменные технологии за счет высокого энергосбережения и к.п.д., достигающего 90%, являются перспективным направлением развития техники и технологии [1, 2].

Для повышения эстетико-потребительских свойств изделий из бетона используют различные материалы и технологии их нанесения на лицевую поверхность [3]. Недостатком данных защитно-декоративных покрытий является их низкая долговечность.

Защитно-декоративные покрытия, полученные методами термического воздействия, являются более долговечными и качественными.

С целью устранения этих недостатков нами разработана энергосберегающая технология получения защитно-декоративного покрытия на изделиях из бетона методом плазменного напыления.

Под воздействием высоких температур плазмы в поверхностном слое бетона происходят процессы дегидратации. Нами предложено

для предотвращения процессов дегидратации наносить промежуточный слой из жаростойких материалов. В качестве жаростойкого материала разработан состав для промежуточного слоя, состоящий из глиноземистого цемента, жидкого стекла и молотого боя шамота.

Для внедрения данной технологии в производство можно использовать стандартное технологическое оборудование.

Промежуточный слой предотвращает дегидратацию поверхностного слоя изделий из бетона при плазменной металлизации. С целью повышения прочности сцепления покрытия с основой поверхность промежуточного слоя должна быть микрошероховатой. Для получения микрошероховатой поверхности в состав смеси брали различные соотношения крупных и мелких фракций молотого шамота, производили напыление алюминия на лицевую поверхность изделий из бетона и определяли прочность сцепления покрытия с основой.

Для металлизации бетона использовали электродуговой плазматрон УПУ-8М с плазменной горелкой ГН-5Р.

Изделия из бетона металлизировали алюминием и медью в виде проволоки Ø 1,0-2,0 мм и порошков с размером фракций 40-100 мкм. Проволоку вводили на срез плазменной горелки ГН-5Р и порошок в сопло самой горелки.

Технология металлизации бетона предусматривает мгновенное расплавление металла в условиях высокой температуры плазмы, порядка 7000-10000К. это приводит к образованию оксидной пленки на поверхности металлических частиц. При плазменном напылении расплавленные частицы алюминия, имеющие сферическую форму, существенно деформируются, затвердевают и приобретают форму тонкого диска. Это подтверждено нами при исследовании контактной зоны «покрытие-подложка» и использованием оптической микроскопии.

Прочность сцепления покрытия с подложкой в среднем составляет 0,8-1,2 МПа.

Благодаря высокой эффективности разработанная технология рекомендуется к широкому промышленному внедрению.