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As known, synthetic geometry is a foundation 
of explorations in analytic geometry. It is proved by 
sayings of G. Kantor [1]: «…for a long time compli-
cations arose at the way of introducing complex val-
ues, before their geometric presentation with points 
and ranges on a plane has been found»; and F. Klein 
[2]: «…historical emergence of the idea of irrational 
values has its roots in geometric intuition», etc. 

In his work, F. Klein specifi es: «...two types of 
geometry are outlined: synthetic geometry…and…
analytic geometry… A third type can be studied be-
sides these two, ..it is a generalization of the fi rst 
two types». It is known that one of synthetic ge-
ometries is called descriptive geometry that studies 
methods of displaying spatial forms onto a plane. 

The display process includes:
– an original;
– display apparatus;
– a model (an image);
– model bearer. 
Any spatial objects serve as an original, a point 

is the simplest one of them, it is explicitly defi ned 
by three coordinates with regularity ∞3 (a point on a 
plane has regularity ∞2, a point on a curve (straight) 
has regularity ∞1) [4]. 

Curved (straight) lines or surfaces (planes) can 
serve as projecting apparatus.

A model (image) of a point will be represented 
by a point while projecting with a curved (straight) 
line or a curve (straight) while projecting with a sur-
face (plane). 

A surface (plane) or a curved (straight) line can 
serve as a bearer of the model.

To express the provided information, we will 
take a point as an original, in other words:

A point is the original
An original is a point
cluster (S) or clusters of straights are the dis-

play apparatus
a point or points are the model
a plane is the model bearer.
Besides, a necessary requirement while pro-

jecting a space point that has regularity  is that its 
model has the same regularity ∞3.

Clusters of straights (S1) and (S2)are the pro-
jecting apparatus, and plane P is the model bearer. 
Space point A is projected form the center of S1 to 
the point A1 on the plane P (Fig. 1) that has regular-
ity ∞2, and all points of the beam SA1 are projected 
into the point A1. In order to meet the projection 

requirement, we take another projection center S2, 
and points S1 and S2 will defi ne the straight in the 
space, and it will cross the plane P in point F0 that 
is constant for this projections apparatus and will 
discharge beam of straights (F0) on the plane P. 
Then, A1 will discharge the straight from the beam 
of straights (F0), and onto it we will project the 
point A from the center S2 into the point A2 with 
regularity ∞1. As a result, we will have a model of 
point A on the plane P – a couple of points A1 and 
A2, in other words, the model regularity will equal 

 and here we can see that regulari-

ties of the original and the received model are equal. 

Fig. 1

If a body will serve as an original, it will sepa-
rate into cut-offs as a beam (m). The cut-offs will 
model from projection centers (S1) and (S2) in the 
beam of straights (F0) on the plane P. 

Thus, descriptive geometry solves two prob-
lems: a direct problem – receiving a model of an 
original via projection apparatus according to the 
given original; and an indirect problem – receiving 
an original via projection apparatus according to a 
given model. The direct problem of descriptive ge-
ometry is called modeling, and the indirect problem 
is called constructing.

Let us explain the process of modeling and con-
structing, using Fig. 1.

We model point A via projection apparatus with 
two beams of straights аппаратом (S1) and (S2) onto 
the surface P. Projection centers S1 and S2 will de-
fi ne the line m in space, and it will cross the plane P 
in point F0 that defi nes the beam of straights (F0) on 
the plane P. Modeling space point A is carried out 
in the plane Δ(A, m). Point A from the center S1 is 
projected into the point A1 that defi nes, for example, 
the straight a from the beam of straights (F0). On it 
we will project the point A from the center S2 into 
the point A2. As a result, model of the point A is rep-
resented by the couple of points A1 and A2. 
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Construction of the space point A is carried 
out if the point model that is a couple of points A1 
and A2 on the plane P and projection apparatus, 
for example, couple of beams of straights (S1) and 
(S2) in space, is given. As earlier, projection cent-
ers S1 and S2 will defi ne the straight m in space, 
and it will cross the plane P in the point F0 that 
defi nes the beam of straight bearers of space points 
(F0). The given points A1 and A1 lie on one of the 
straights of the beam of straights (F0), they can lie 

on the straight a, for example. Crossing straights 
a and m defi ne the plane Σ(a, m) – the plane of 
constructing the point A. Beams of projecting the 
point A1 from the projection center S1 and the point 
A2 from the center S1 that lie in the plane Σ(a, m)
will cross in one point A. Therefore, we can see 
that the original can be constructed having two 
model projections. 

On the plane P projections of space points will 
come in to types that we will explain in Fig. 2, 2’. 

Fig. 2 Fig. 2’

We model two points A and B from centers S1 
and S2on the plane P. Points A and B will discharge 
two planes from the beam of planes (m), and these 
planes will cross the plane P along straights a and 
b of the beam of straights (F0) (Fig. 2). From the 
projection center points A and B are projected cor-
respondingly by the pair of points A1 and A2 on the 
straight на a and B1 and B2 on the straight b. A spe-
cifi c case of placing spatial points A and B is pos-
sible. These points can be located on one beam of 
straight cluster (S1) or (S2). In this case points A and 
B will belong to one plane of the beam of planes 
(m), and this plane will be by two crossing straights 
m and (AB)(). This plane will cross place P along the 
straight a = b of the beam of straights (F0) (Fig. 2). 
Points A and B from the projection center S1 will 
project into the concurred projections A1 = (B1), 
such point on a projection plane are called rival 
[5, 6]. Projections of points A and B from the pro-
jection center S2 project onto the plane P into two 
different points A2 and B2 of the straight line a = b. 

Emergence of a problem
Let us study implementation of descriptive ge-

ometry methods in order to solve some problems of 
analytic geometry. To do it, let us examine affi ne 
coordinates on a plane. 

The simplest coordinate system on a straight 
can be imagined, if we set a starting point on it, 
point O, a unit with coordinate 1, and positive or 
negative spacings x from point O (Fig. 3). 

On the plane or in space we will take two or 
three coordinate straights x, y or x, y, z with a mutual 
point О and random angles that are formed between 
these straights. Angles that are formed between axis 

equal 90°. Affi ne straight is unlimited in both direc-
tions, but we will never achieve any point that lies 
on the opposite direction on it.

Fig. 3

Fig. 4

The special feature of an affi ne plane is that 
parallel straights do not cross on it. 

On the affi ne straight let us study the division 
of the section M1M2 by the straight point M in this 
relation of m/n, where  and are random numbers 
(Fig. 4). Coordinates of the point M(x, y)accord-
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ing to the coordinates of points M(x1, y1) and M(x2, 
y3)are produced in textbooks on analytic geometry 

[7, 8, 9], where   for 

the point M that lies inside the section and (m/n) > 0, 
if point M will lie outside of the section, (m/n) < 0. 

If m/n = 1, point M with coordinates  

and   will divide the section M1M2 in 

halves. If m/n = –1, coordinates of the point M′ will 
be x = ∞ and y = ∞, such points are called unlimit-
edly remote, and are not studied in affi ne geometry. 
These unlimitedly remote points have been intro-
duced into geometry as nonintrinsic elements. 

Thus, a nonintrinsic point is produced on a 
straight, and nonintrinsic is produced on a plane, 
and nonintrinsic is produced in space. Therefore, 
each straight obtains a nonintrinsic point that is 
represented on a closed line (Fig. 5). Now parallel 
straights have obtained a mutual nonintrinsic point. 
Producing nonintrinsic points on a straight allowed 
us to simplify many suggestions, for example, 
two straights cross on a plane now. Therefore, it is 
claimed that, while moving in any direction, along a 
straight we can return to an initial point through the 
unlimited one. Such straight has been called pro-
jective straight, and plane – projective plane, and 
space – projective space. Studying the problem of 

dividing the section of the straight M1M2 in relation 
to m/n on the projective straight, point M∞(∞) in 
now legalized, and we can suggest that it divides 
the section M1M∞M2 in relation m/n = –1.

Besides, nonintrinsic geometric images can-
not be set with affi ne coordinates. Therefore, a new 
defi nition of coordinates is introduced. It is set for 
the straight  so that each point on the straight has not 
one, but two corresponding coordinates x1 and x2, 
we have a redundancy of coordinates for a straight 
[3]. Moreover, a multiplicity of value systems will 
be set in correspondence to a single point on a 
straight, they will be represented as (ρx, ρy), for ex-
ample, point x – 1. I in the Fig. 6 where ρ is random 
but not equal to zero number, x1, x2 obtain any val-
ues except for their simultaneous equality to zero. 
In this case we receive a specifi c single point on a 
straight, and in case x2 = 0 and x1 = λ we receive a 
nonintrinsic or unlimited point. Thus produces co-
ordinates are called homogeneous coordinates. 

Rival points

Let us study the coordinate  on axis Ox 

more carefully, where x1 and x2 alter from 0 to ∞ 
and, it is necessary to consider that while x1 grows 
and x2 remains constant, x grows, and if x1 remains 
constant, and x2 grows, x decreases. Let us place 
variables x, x1, x2 on straights, x – on a horizontal 
straight, and variables x1 and x2 on parallel straights 
with an inverse count from the center of axis. 

Fig. 5
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Let us place the point on infi nity within the 
limits of our sight, it will be the point of crossing 
between axis Ox2 and Ox, then we will examine the 
behavior x in this case.

Therefore, we can add a theorem to the claim 
by G. Kantor on that the point ∞ is the only one 
on a projective straight [3]: Two point of space ∞ 
and –∞ project into rival point on a projective 
straight. 

Let us study alterations of on the axis (Fig. 5), 
it decreases from ∞ to 0, and further to –∞. There-
fore, the highest valuedecreases down to the small-
est value ∞ on a digital axis. However, –∞ cannot 
transfer toand backwards. In the Fig. 6 we can see 
that ∞ closes with the point  on the right, 
and point –∞ – on its left, and these points coin-
cide with the point . In other words, pro-
jection of points ∞ and –∞on a projective straight 
are rival points (it can be observed in Fig. 2’ with 
points A1 = (B1). Therefore, an original of the pro-
jective straight will be represented as a broken spa-
tial curve. 

If now values of x increase from x = 0 to ∞ in 
point , values of will decrease to the left 

of zero in point  down to –∞ in point . 

In case straights (2, –2), (–3, 3), (10, –10) etc. 
are parallel to the axis and are straight of beam of 
straights M∞(–1) point x = –1 will be located in the 
infi nity. 

Thus, it is obvious that there is no point  
on axis Ox. 

According to the provided information, we can 
see that, in order to construct pint on a projective 
straight, one has to escape to a plane. Two planes 
are required to construct points on a plane where 
two axis – Ох and Оу operate, in other words, 

 and  require two planes, and their 

crossing line will care Ox3 and axis Ох and Оу will 
be parallel to it.

Since the studied projective straight is a model 
of a spatial object, we cannot construct it, as a pro-
jective straight has only one projection. Each point 
of an original of a projective straight projects into 
one point on the model, and only two points –∞ 
and –∞ project into rival points. There are several 
spatial lines, and one projection of them represents 
a closed line with two rival points, for example, a 
wind of a helical cylindrical line, if ∞ and –∞have 
been placed at the end and the beginning of the 
wind while projecting it by a beam of straights 
with their center in a nonintrinsic point (Fig. 6), or 
a wind of cone helical line that is projected by a 
beam of straights from point S that coincides with 
the cone vertex (Fig. 7). A wind of a helical line that 
is placed on an unilocular hyperboloid will have a 
similar projection. 

Fig. 6

Fig. 7

Resume
Thus, we have geometrically proved that:
1) projections of spatial points ∞ and –∞are ri-

val point on a projective line;
2) x1 and x2cannot equal zero simultaneously, as 

there is no such point on axis Ox;

3) There is no point  on an affi ne straight 

in homogeneous if x1 = –x2 or –x1 = x2.This point ex-
ists on a projective straight in point M∞(–1).

Therefore, using methods of descriptive geom-
etry, one can describe an original of a projective 
straight:

a) An original of a projective straight can be 
located on: a cone surface with its vertex in point 
S1 and a directing projective straight, if a projec-



82

INTERNATIONAL JOURNAL OF EXPERIMENTAL EDUCATION №12, 2013

Physical and Mathematical sciences

tive apparatus will consist of two beams of straights 
with intrinsic centers S1 and S2. Each point of an 
original will lie on one forming line of a conic sur-
face, points ∞ and –∞ will lie on the same forming 
line of a conic surface. 

b) An original of a projective straight can lie 
on a cylindrical surface with a directing projective 
straight and projection apparatus that consists of 
two beams of straights with centers  and  in 
nonintrinsic points. 
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The model of distributed calculators makes it 
possible a parallel calculation of the correlated N-
particle system with a complex multi-particle inter-
action (long-range ionic and short-range repulsive, 
two- and three-particle covalent interactions) with 
MPI and CUDA technologies. The computational 
model is based on the mathematical model of heter-
ogeneous descriptors developed by the authors, that 
allows shift the focus from the describing the physi-
cal interactions in the system to the description of 
data fl ow between the descriptors. The results of 
computer experiments, which compare the time of 
the simulation on the cluster of 16 calculators and 
GPU NVIDIA are given. The model of distributed 
calculators was being tested with the software pack-
age of RIS «MD-SLAG-MELT»[1].

Nowadays, computer modeling (CM) is widely 
used in various fi elds of modern science. In particu-
lar, in physical chemistry we can study the prop-
erties and structure of materials and their relation-
ships.

Molecular-dynamic (MD), Monte-Carlo and 
quantum-chemical methods are applied there and 
allow to defi ne different sets of properties. The mo-
lecular-dynamics method allows to defi ne the whole 
complex of properties (structural, thermodynamic, 
transport) and to investigate the interrelations of na-
nostructure and physical-chemical properties [1–5].

The size of the simulated system for MD mod-
eling is extremely important. A signifi cant increase 
in the size of the system provides the practical rel-
evance of the results. The calculation of the systems 
with 105–107 particles requires a large amount of 
time and computer resources and it makes impos-
sible carrying out CM without high-performance 
computing [6, 7]. To solve this problem, the authors 
have developed a model of distributed calculators 
based on distributed computing methods for corre-
lated N-particle system [8–10].

Physical phenomena that are adequately de-
scribed by the classical and quasiclassical theory 
can be simulated (using models of particles) by 
molecular dynamics method. The term «model of 
particles» is the general one for a class of comput-
ing models in which the discrete description of the 
physical phenomena includes cooperating particles. 
Each modeling particle has a set of constant and 
variable attributes.

In this case molecular-dynamic simulation 
represents the numerical solution of the Cauchy’s 
boundary task, which means that the initial system 
state in a bounded region of space (calculation area) 
is specifi ed at the time t = 0 and the boundary con-
ditions are reserved on it. Modeling is tracking the 
time evolution of this confi guration. The main part 
of calculation is the cycle on a time step in which 
the state of physical system changes on time for a 
small step Δt.

The current condition of the physical system 
is defi ned by the attributes of the fi nal ensemble of 
particles, and the evolution of the system is defi ned 
by the interaction laws of these particles. The most 
of the molecular-dynamics systems relates to the 
class of long-range potentials, or considering only 
short-range covalent interactions.

The subject of this work is an investigation of 
the polymerizing systems with multi-particle inter-
actions which means uniting some types of interac-
tions – two-particle contribution (long-range ionic 
and short-range repulsive) and multi-particle ones 
(two and three-particle covalent interactions). The 
description of this class of models is given in Ta-
ble 1 [10].

The ionic model is a part of ionic-covalent 
model though for modeling ionic connections it can 
be used only independently. In the ionic model (IM) 
potential functions are built for the ion system. The 


