«Производственные технологии», Италия (Рим, Флоренция), 5-12 сентября 2015 г.

Технические науки

ГИГИЕНИЧЕСКАЯ ОЦЕНКА УСЛОВИЙ АРМИРОВАНИЯ ТЕКСТИЛЬНОГО МАТЕРИАЛА КОЛЛАГЕНСОДЕРЖАЩЕЙ КОМПОЗИЦИЕЙ

 1 Ташпулатов С.Ш., 1 Бабаева Г., 1 Нутфуллаева Л., 2 Черунова И.В., 2 Стенькина М.П.

¹Ташкентский институт текстильной и легкой промышленности, Ташкент; Бухарский инженерно технологический институт, Бухара;
²Донской государственный технический

²Донской государственный технический университет, Институт сферы обслуживания и предпринимательства (филиал), Шахты, e-mail: i_sch@mail.ru

Для развития технологий обеспечения требуемых показателей гигиенических свойств пакетов материалов швейных изделий существует одно из эффективных направлений – нанесение на текстильные материалы дискретного полимерного покрытия, обеспечивающего необходимый тепло- и газообмен тела человека с окружающей средой [1]. Для исследований стика пакетов образцов «текстильный материал + клеевая вискоза».

Гигиенические свойства образцов тканей с сеткой армирования из КПК, удовлетворяющих по величине деформирующей нагрузки, были оценены по показателям паропроницаемости (таблица).

Анализ экспериментальных данных показывает, что показатели паропроницаемости, (г/ $\rm M^2$ -ч), (то есть, способность текстильных материалов пропускать пары влаги, где коэффициент паропроницаемости показывает, какое количество водяных паров проходит через единицу площади материала в единицу времени) исследуемых образцов по сравнению с контрольным пакетом, изменяются на незначительную величину (от 0,51 до 1,77%) и не зависят от вида материалов составляющих исследуемый пакет.

Оценив гигиенические свойства пакетов «ткань + КПК», можно сделать заключение о возможности применения прямой стабилизации полуфабриката изделия с полимерным покрытием в виде сетчатого армирования с размерами ячеек 3×3 , 3×4 , 4×3 , 5×5 (мм).

Гигиенические показатели паропроницаемости образцов тканей и пакетов с сеткой армирования из КПК

Вид образцов	Ткань арт. 2634	Ткань арт.2634 + клеевая вискоза арт.86040	Ткань арт.2634 + КПК покрытие с размерами армирования, мм:			
			3×3	3×4	4×3	5×5
Паропроницаемость, мг/м ² ·с	4,01	3,94	3,89	3,87	3,89	3,96

была принята концепция нанесения коллагенсодержащей полимерной композиции (КПК) на текстильный материал в виде сетки армирования (ячеек), ориентированной под углом 45° к нитям основы и утка ткани, для обеспечения изотропных свойств материала во всех направлениях [2]. При этом формируется определенная формоустойчивость [3, 4] и совокупность гигиенических показателей такого модифицированного пакета материалов в изделии, где важным является размер ячеек, для которых отсутствуют нормативные данные по величине указанного показателя. Для гигиенической оценки в качестве эталона для сравнения взята характери-

Список литературы

- 1. Афанасьева Н.С., Делль Р.А. Гигиена одежды. М.: Лёгкая промышленность, 1972. 346 с.
- 2. Ташпулатов С.Ш. Разработка высокоэффективной ресурсосберегающей технологии изготовления швейных изделий: автореф. дис. . . . д-ра техн. наук. Ташкент: ТИТЛП. 2008.-38~c.
- 3. Ташпулатов С.Ш., Бабаева Г.И., Нутфуллаева Л.Н., Черунова И.В. Исследование формоутойчивости объемных деталей швейных изделий // Международный студенческий научный вестник. -2015. -№ 3-1. -C. 129-131
- 4. Смирнов В.В., Ларина Л.В., Черунова И.В., Меркулова А.В., Щеникова Е.А. Методы интенсификации процессов гигротермической обработки для придания материалам легкой промышленности свойств формоустойчивости // Современные проблемы науки и образования. 2012. № 6. С. 133.