было сравнимо с ДАЖ. В ТО АЖ содержание ПГ было в 5,1 раза выше, чем в её ПЗ и в 1,7 раза выше, чем в ДАЖ. Активность СП в ТО ПРЖ, наоборот, была ниже, чем в ПЗ в 1,7 раза и в 2,4 раза выше, чем в ДАЖ, а в ТО АЖ выше в 2,2 раза, чем в её ПЗ и в 1,7 раза выше, чем в ДАЖ. Цитологический контроль показал отсутствие опухолевых клеток в проксимальном и дистальном участках ЛР. В проксимальной части ЛР ПРЖ и ПГ, и СП превышали ДАЖ в 1,7 и 1,9 раза, а в дистальной части ЛР – ПГ был в 3,1 раза ниже, СП – практически соответствовал ДАЖ. В проксимальной ЛР АЖ содержание ПГ было ниже, чем в ДАЖ в 15,3 раза а активность СП – в 3 раза, в дистальной ЛР АЖ содержание ПГ было ниже, чем в ДАЖ в 1,3 раза, активность СП – в 2 раза.

Результаты свидетельствуют о достоверном нарушении баланса ПГ/СП (p < 0.05 во всех случаях, кроме проксимального участка ЛР ПРЖ) не только в туморозном очаге, но и в его перифокальной зоне и, что важно, в линии резекции обеих злокачественных опухолей, сравнительно с доброкачественной. Отсутствие злокачественных клеток в ЛР ещё не является свидетельством благополучия этих участков. Именно плазмин «готовит почву» для проникновения злокачественных клеток в ткани, окружающие опухоль и последующего неоангиогенеза, нарушая стабильность межклеточного матрикса, расплавляя мембранные и клеточные структуры, как прямо, так и косвенно, через активацию других зимогенов. Единственным источником ангиостатина является плазминоген, но он истощён и в перифокальной зоне АЖ (ПГ/СП=1,8), и в аналогичной ткани ПРЖ (ПГ/СП=1,7). В проксимальной части ЛР ПРЖ баланс ПГ/СП=3,4 (достоверных отличий от ДАЖ не установлено), в дистальной – 1,1, а в проксимальной части ЛР АЖ – 0,8 и 6,0 в дистальной части ЛР АЖ. Это подтверждает существование защитной, так называемой «буферной зоны», вокруг патологически изменённой ткани, однако чаще она располагается в пределах перифокальной зоны. Необходимо учитывать, что при патологии значительные количества активного плазмина связываются ингибиторами, которые, однако, истощаются при длительном развитии процесса. В связи с этим, регистрация высокой активности свободного плазмина в линии резекции при раке желудка может свидетельствовать о высоком токсическом влиянии опухоли даже на визуально неизменённые участки и, возможно, о наличии в них опухоль-ассоциированного фермента. Перифокальные участки ЛР ПРЖ и АЖ, видимо, нельзя отнести к области защиты от опухолевой агрессии, поскольку обнаружена резко повышенная активность СП при недостатке ПГ.

Выводы. 1. Для всех тканей ПРЖ, окружающих туморозный очаг, характерна резко повышенная активность СП, что позволяет считать эти области подверженными влиянию злокаче-

ственной опухоли. В проксимальной ЛР ПРЖ баланс ПГ/СП близок к ДАЖ, но высокая активность СП позволяет считать его функции в этой области не физиологическими, а скорее повреждающими. 2. Дистальные участки линии резекции АЖ, в связи с пониженной активностью СП и высоким содержанием ПГ можно считать действительно защитной, т.е. «буферной» зоной. 3. В ткани доброкачественной аденомы желудка, при балансе ПГ/СП=3,9, свободный плазмин может осуществлять санирующие функции.

СВЯЗЬ ДИНАМИКИ СВОБОДНОГО ПЛАЗМИНА ПЛАЗМЫ КРОВИ С ПОСЛЕОПЕРАЦИОННЫМ КРОВОТЕЧЕНИЕМ ПРИ РАКЕ ГОЛОВКИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

Кит О.И., Франциянц Е.М., Козлова Л.С., Колесников Е.Н., Мезенцев С.С., Газиев У.М.

ФГБУ «Ростовский научно-исследовательский онкологический институт» Министерства здравоохранения России, Ростов-на-Дону, e-mail: 79094277471@yandex.ru

Широкая субстратная специфичность плазмина, в норме обеспечивает жидкое состояние крови, расщепление фибрина и фибриногена с их выведением, активацию кининовой системы и др. При патологии, в частности онкологической, нарушение баланса «плазминоген/плазмин» крови может привести как к тромбозам, так и к кровотечениям.

Цель исследования. Изучение динамики активности свободного плазмина (СП) и содержания плазминогена (ПГ) в процессе подготовки к панкреатодуоденальной резекции (ПДР) и в течение госпитального периода после операции.

Материалы и методы. Исследована плазма крови (Пкр) 79 больных (42 мужчины, 37 женщин, 44-76 лет, $T_{2-4}N_0M_0$) раком головки поджелудочной железы (РГПЖ) в процессе подготовки к ПДР и после операции (п/о). Исследования проводили при поступлении (фон), в 1 сутки после чрескожной чреспечёночной холангиостомии (ЧЧХС) по Сельдингеру (по поводу механической желтухи – МЖ, вызванной РГПЖ); в 1 сутки после аппаратного плазмафереза (АПФ, через 2 недели после ЧЧХС); на 30 сутки после АПФ – перед ПДР; в 1 сутки после ПДР и при выписке. Измерения ПГ и СП проводили на двулучевом спектрофотометре HITACHI U-2900 IIO UV Solutions. Результаты сравнивали с данными Пкр 39 здоровых доноров (N – норма).

Результаты исследования и их обсуждение. Исследовали СП, т.к. после активации ПГ плазмин быстро связывается с эндогенными ингибиторами и его протеолитическая активность блокируется. В связанном состоянии П теряет свою биологическую активность и элиминируется. При значительной экспрессии П крови и угнетении его ингибиторов, что характерно

для онкологического заболевания, вновь освобождающийся фермент способен нарушить физиологический механизм ферментативного контроля тромбообразования, заключающийся в его локальном действии при определённом соотношении «предшественник/фермент».

Фоновые данные свидетельствовали об уже имеющемся нарушении баланса ПГ/СП, относительно N: содержание ПГ было повышено в 3 раза, активность СП – в 3,6 раза. В процессе подготовки к ПДР и после операции нормализации ПГ и СП не наблюдали. Содержание ПГ и активность СП были повышены у всех больных в разной степени во все сроки исследования (p<0,01). В течение госпитального периода у 4 больных из 79 (5,1% в данной группе больных) выявлено кровотечение из зоны панкреато-дигестивного анастомоза, которое связывали с несостоятельностью панкреато-кишечного (3) или панкреато-гастроанастомоза (1). Больные выделены в группу «кровотечения» (Кр) и ретроспективно проведено сравнение с результатами исследования Пкр больных без Кр (БКр). Установлено, что различия были и при первом поступлении больных на лечение, фоновые данные по ПГ и СП в Пкр больных: баланс ПГ/СП был в Пкр больных БКр в 12,5 раз выше, чем в группе Кр. После ЧЧХС баланс ПГ/СП в Пкр больных БКр в 4,3 раза выше, чем в группе Кр, после $A\Pi\Phi$ – в 3,6 раза, перед $\PiДР$ – в 6,2 раза, после ПДР – в 32,8 раза, при выписке – в 11 раз.

Результаты указывают на длительное нарушение взаимодействия «предшественникфермент» в крови больных, имеющих РГПЖ, а также на индивидуальные особенности реагирования организма на развитие опухолевой болезни. Период п/о был осложнён кишечным или желудочным кровотечением только у тех больных, в Пкр которых обнаружен патологический баланс ПГ/СП - от 0,4 до 1,7 в процессе всего срока наблюдения. Баланс ПГ/СП в Пкр больных Кр считали патологическим, т.к. в Пкр здоровых доноров установлено значение $\Pi\Gamma/C\Pi = 2.3 \pm 0.1$, которое принималось за N. Предполагается, что указанные больные могли иметь предрасположенность к пониженной свёртываемости крови или такова индивидуальная реакция их организма на формирование в организме злокачественного новообразования.

Выводы.

- 1. Резкое снижение коэффициента соотношения $\Pi\Gamma/C\Pi$ до значений ниже нормы повышает степень риска послеоперационного кровотечения.
- 2. Необходимо проведение мониторинга больных с диагнозом «рак головки поджелудочной железы», поступающих на подготовку к ПДР и оперативное лечение по показателям содержания ПГ и активности свободного плазмина с расчётом коэффициента их баланса для

своевременной профилактики данного осложнения ещё в период подготовки к ПДР.

ВЛИЯНИЕ N-ЭТИЛМАЛЕИМИДА НА РЕАЛИЗАЦИЮ АПОПТОЗА ОПУХОЛЕВЫХ КЛЕТОК ЛИНИИ Р19 ПРИ НОРМОКСИИ И ГИПОКСИИ

 1 Орлов Д.С., 2,3 Рязанцева Н.В., 1 Степовая Е.А., 1 Носарева О.Л., 1 Иванов В.В., 1 Шахристова Е.В.

¹ГБОУ ВПО «Сибирский государственный медицинский университет» Министерства здравоохранения Российской Федерации, Томск, e-mail: doc_esperanzo@mail.ru; ²ФГАОУ ВПО «Сибирский федеральный университет», Красноярск; ³ГБОУ ВПО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации, Красноярск

Формирование условий недостаточного снабжения кислородом в отдельных регионах опухоли при её развитии коррелирует с резистентностью к терапии, повышенным метастазированием и ухудшением общего прогноза заболевания. Однако, несмотря на свою отрицательную роль в опухолевой прогрессии гипоксия может быть использована для разработки новых подходов для противоопухолевой терапии.

Повышенная продукция активных форм кислорода в опухолевых клетках при гипоксии предоставляет возможность для избирательного устранения таких клеток за счет модуляции окислительного стресса. Однако компенсаторная активация систем антиоксидантной защиты препятствует достижению данной цели.

Клетки линии Р19 культивировали в полной питательной среде alpha-MEM, в стандартных условиях с соблюдением рекомендаций предоставленных Российской коллекцией клеточных культур. Для моделирования гипоксии использовалась камера «Нурохіа Іпсиbator Chamber», заполняемая газовой смесью (5% О₂, 5% СО₂, 90% N₂). Период инкубации составлял 18 часов. Концентрация N-этилмалеимида составляла 5 мМ. Реализацию апоптоза оценивали методом проточной цитофлюориметрии с применением FITC-меченного аннексина V и пропидий иодида.

При моделировании гипоксии *in vitro* было установлено увеличение количества аннексинпозитивных клеток в культуре в 4 раза по сравнению с нормоксией (p < 0,05). Воздействие
N-этилмалеимида приводило к значительному
повышению числа клеток, вступивших в апоптоз, относительно контрольных групп как при
нормоксии, так и при гипоксии (p < 0,05). Более
того, в условиях низкого содержания кислорода
в среде N-этилмалеимид способствовал запуску
программированной гибели клеток (p < 0,05).

Исследование выполнено при финансовой поддержке Российского гуманитарного научного фонда в рамках научного проекта № 15-36-01289.