удк 004.94:621.791

МОДЕЛИРОВАНИЕ КОНТАКТНЫХ НАПРЯЖЕНИЙ КОНСТРУКЦИИ ПЛАНЕТАРНОЙ МЕЛЬНИЦЫ

Даненова Г.Т., Ахметжанов Т.Б., Коккоз М.М., Тутанов С.К.

Карагандинский государственный технический университет, Караганда, e-mail: guldan72@mail.ru

В данной работе рассматривается моделирование конструкции планетарной мельницы периодического действия. Моделирование выполнено на основе программы ANSYS Workbench. Разработанная методика позволяет определить значения контактных напряжений, возникающих между кожухом и ободками барабана, между внутренней поверхностью барабана и упрощенной моделью мелющих тел. Проведено сопоставление полученных результатов с аналитическими данными. Анализ показал хорошую сходимость результатов.

Ключевые слова: инженерные задачи, моделирование, контактные напряжения, компьютерные технологии, планетарная мельница, контакт.

MODELING OF CONTACT STRESSES OF THE PLANETARY MILL CONSTRUCTION

Danenova G.T., Akhmetzhanov T.B., Kokkoz M.M., Tutanov S.K.

Karaganda State Technical University, Karaganda, e-mail: guldan72@mail.ru

In the given work there is the modeling of a planetary mill construction of periodic action. Modeling is executed on the basis of the ANSYS Workbench program. The developed technique allows to define values of the contact tension arising between a casing and rims of a drum, between an internal surface of a drum and the simplified model of grinding bodies. Comparison of the received results to analytical data is carried out. The analysis showed good convergence of results.

Keywords: Engineering problems, modeling, contact stresses, computer technologies, planetary mill, contact.

Организация масштабного и эффективного производства тонкодисперсных и наноструктурированных порошков требует создания технологий на основе планетарных мельниц, обладающих техническими характеристиками, которые позволяют отказаться от нескольких стадий дробления-измельчения, применяемых в традиционных технологических схемах.

Процесс измельчения материалов является одним из энергоемких. С этой точки зрения определенный интерес представляют планетарные мельницы, у которых усилие разрушения создается инерционными силами. В таких мельницах можно легко изменить не только величину усилия, но и частоту циклов воздействия.

В планетарных мельницах обычно имеются 3 или 4 барабана, вращающихся вокруг центральной оси и одновременно вокруг собственных осей в противоположном направлении (рис. 1). В барабаны загружают измельчаемый материал и мелющие тела (шарики). Частицы измельчаемого материала претерпевают множество соударений с мелющими телами и стенками барабана. Эффективность планетарных мельниц обусловлена высокой кинетической энергией мелющих тел, благодаря большой скорости их движения создающих высокие напряжения в активируемом веществе.

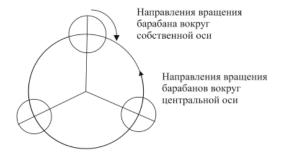


Рис. 1. Принцип действия планетарной мельницы

Удельная производительность планетарных мельниц в 10-30 раз превышает удельную производительность традиционного измельчительного оборудования. Недостатки обычных шаровых мельниц хорошо известны: большие габаритные размеры, огромный расход энергии и низкая эффективность измельчения. Планетарные мельницы не требуют массивного дорогостоящего фундамента, а их эксплуатационные расходы в несколько раз меньше, чем для обычного измельчительного оборудования [1].

Разработанная конструкция планетарной мельницы периодического действия представлена на рисунке 2.

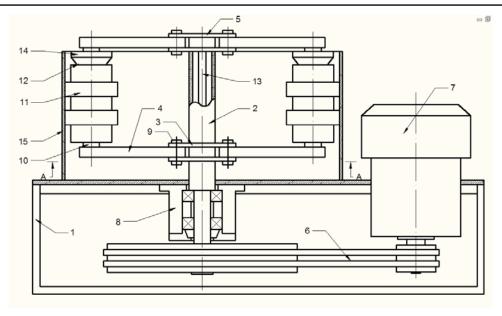


Рис. 2. Общий вид планетарной мельницы

Планетарная мельница периодического действия содержит кожух 15, в котором размещены помольные барабаны 11 с загрузочными отверстиями и крышками 14. На верхнем водиле закреплены крышки. Каждое водило снабжено двумя рычагами 4, диаметрально установленными на соответствующей планшайбе с возможностью поворота и соединенными с элементами установки помольных барабанов. Помольные барабаны при вращении взаимодействуют с внутренней поверхностью кожуха. Планетарная мельница содержит смонтированную на основание 1 центральную полую колонну 2, на которой закреплена основная планшайба 3, установлены водила 4 и дополнительная планшайба 5. Планшайба посредством колонны связанна клиноременной передачей 6 с электродвигателем 7. Колонна 2 вращается в подшипниковом узле 8.

Планшайба 3 посредством пальцев 9 сопряжена с водилом 4. Водила 4 посредством подшипников скольжения 10 сопряжены с помольными барабанами 11 гуммированными по наружной поверхности. В помольный барабан 11 вставляется стакан 12 с мелющими телами. Для закрепления помольных барабанов 11 служит механизм зажима, выполненный конструктивно аналогично конструкции планшайбы 3 с водилами 4. Дополнительная планшайба 5 жестко соединена со штоком 13 силового гидроцилиндра. Крышки 14 помольных барабанов смонтированы в подшипниковых узлах и имеют возможность вращаться в них. Поверхностью качения помольных барабанов 11 является кожух 15, который одновременно защищает от выброса помольных барабанов в случае выхода из строя механизмов зажима.

Планетарная мельница работает следующим образом. В исходном положении в помольный барабан 11 устанавливается гильза 12, заполненная размалываемым материалом и свободными мелющими телами, например шарами. Посредством штока 13 силового гидроцилиндра опускают дополнительную планшайбу 5. При этом крышки 14 закрывают загрузочное отверстие. В таком положении включается электродвигатель 7 и начинается процесс размола.

Под действием центробежной силы, действующей на помольные барабаны, они прижимаются к поверхности кожуха 15. В зоне контакты помольных барабанов и кожуха возникает сила трения, помольные барабаны начинают обкатываться по поверхности кожуха. После окончания процесса размола двигатель выключается, открывают помольные барабаны, из которых извлекаются сменные стаканы и на их место устанавливаются другие, подготовленные к работе [2].

Контакты между барабанами и кожухом и напряжения, возникающие между ними, играют не маловажную роль в данной конструкции, так как вращение барабанов вокруг собственной оси происходит за счет силы трения между кожухом и барабаном.

В данной работе рассматривается моделирование конструкции планетарной мельницы периодического действия при взаимодействии помольных барабанов и внутренней поверхности кожуха. Моделирование выполнено на основе программы ANSYS Workbench[3].

В построенной модели имеются две контактные области: между кожухом и ободками барабана; между внутренней поверхностью барабана и упрощенной моделью мелющих тел. Для того чтобы обозначить контактные области необходимо в структурной

панели выбрать меню «Connections» и создать новый контакт. Далее ANSYS предложит выбрать контактные поверхности, выбираем внутреннюю поверхность кожуха типа «target» и поверхность ободков барабана типа «contact» (рис. 3).

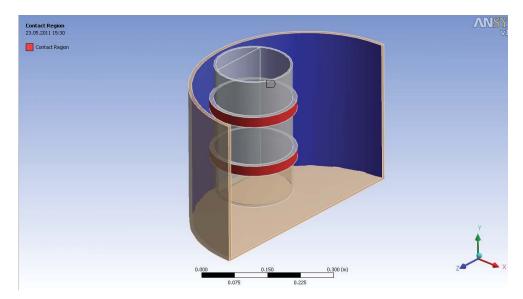


Рис. 3. Контактные поверхности между барабаном и кожухом

В результате построена конструкция планетарной мельницы, а именно кожух и барабан, указаны контактирующие поверхности, заданы свойства материала, а также получена дискретная модель объекта.

Следующий этап – обозначение нагрузок, действующих на модель. Центробеж-

ная сила направлена вдоль радиуса кожуха, перпендикулярно плоскости упрощенной модели мелющих тел. В результате расчета получены распределения минимальных и максимальных напряжений по всем осям, и деформации в любой точке, как в кожухе, так и в помольных барабанах (рис. 4,5).

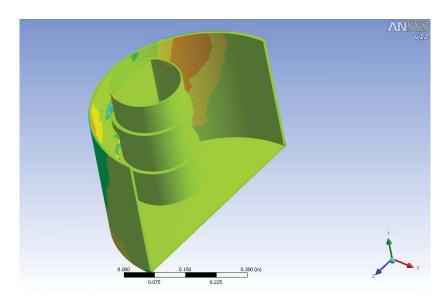


Рис. 4. Распределение напряжений на поверхности кожуха

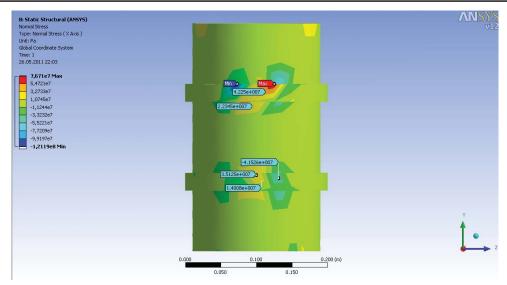


Рис. 5. Распределение напряжений на поверхности барабана

После окончания расчетов получили максимальные значения напряжений в зоне контакта 79 МПа. Максимальное допускаемое напряжение, возникающее в области контакта, для стали равно 430 МПа. Значения, полученные в результате проведения эксперимента, не превышают значений допускаемых контактных напряжений, то есть выполняется условие прочности по контактным напряжениям, поэтому можно утверждать, что при заданных начальных условиях не будет наблюдаться разрушение и деформация кожуха планетарной мельницы и остается большой запас прочности.

При начальных условиях элементы планетарной мельницы не подвержены разрушению и имеют большой запас прочности. Поэтому для дальнейшего развития и модернизации планетарной мельницы, были проведены еще два эксперимента с большим значением силы, с которой барабан действует на внутреннюю поверхность кожуха. Было решено использовать еще два значения силы: 200000 Н и 400000 Н.

При проведении эксперимента с центробежной силой равной 200000 Н, были получены следующее максимальное значение контактных напряжений: 205 МПа. Данные значения не превышают максимальное допускаемое напряжение, следовательно, при увеличении силы в 2 раза в зоне контакта кожуха и барабана, не будет наблюдаться разрушение и деформация. Поскольку квадрат угловой скорости пропорционален силе, то можно сделать вывод, что при увеличении квадрата угловой скорости, с которой вращается барабан, в 2 раза, можно уменьшить время измельчения руды при этом детали мельницы не будут подвержены сильному износу.

При силе равной 400000 H, значения максимальных контактных напряжений следующие: 434М Па. Контактное напряжение, возникшее на поверхности барабана, превышает допустимое значение напряжения, следовательно, барабан, при силе 400000H будет подвержен разрушению.

Частоту вращения барабана можно увеличить, приблизительно в 1,5 раза, при этом детали мельницы не будут подвержены разрушению, и уменьшится время необходимое для измельчения руды.

Также в нашей работе был проведен аналитический расчет максимальных контактных напряжений по данной формуле

$$\sigma_{max}=0.418\sqrt{pE\frac{R_2-R_1}{R_1R_2}}$$

где E – модуль упругости, p – давление, R1 – радиус ободков барабана, R2 – радиус кожуха. Результаты, полученные с помощью программного комплекса ANSYS Workbench и рассчитанные аналитическим путем, а также их расхождение в процентном соотношении приведены в таблице. Как видно из таблицы, при нагрузке в 400кПа значение максимальных напряжений превышает предельно допустимое 430Мпа, следовательно, модель будет подвержена разрушению.

Результаты расчетов, полученные в данной работе, свидетельствую о том, что моделирование взаимодействия барабана и кожуха было выполнено успешно. Что касается полученных конечных результатов, программный пакет ANSYS Workbench полностью подходит для расчета подобных задач и дает достоверную картину распределения напряжений и деформаций в объекте исследования.

№	F (кH)	Значение о^{AN} полученное в ANSYS(МПа)	Значение о^{ан} рассчитанное аналитически (МПа)	Погрешность (%)
1	74	79	72	9,7
2	200	205	198	3,5
3	400	434	407	6,6

Значения максимальных напряжений

Данная программа позволяет не только просмотреть результаты моделирования, но и внести поправки в геометрические и рабочие параметры объекта. Методика такого типа анализа позволяет существенно снизить как материальные расходы, так и расходы времени на этапе проектирования.

Стоит заметить, что неоспоримым преимуществом расчета в программе ANSYS Workbench, является то, что мы можем видеть не только все напряжения, возникающие при нормальной работе системы, но и места зарождения критических напряжений, которые могут привести к выходу из строя всей конструкции. Полученные при расчете сведения могут оперативно корректироваться проектировщиком для придания конструкции оптимальной и устойчивой к разрушениям формы.

Используя измельчительное оборудование нового поколения, можно достичь не только уменьшения размера частиц, но и получить механически активированные порошки с новыми физико-химическими свойствами. Использование планетарных мельниц перспективно в порошковой металлургии, для механического легирования и создания дисперсно-упрочненных сплавов. Планетарные мельницы могут применяться во многих областях, таких как: порошковая металлургия, производство и регенерация катализаторов, производство фармацевтических препаратов, измельчение пигментов, измельчение и плакирование абразивных материалов, активация концентратов руд для гидрометаллургии и пирометаллургии, переработке трудноизмельчаемых твердых отходов, производство строительных материалов, сухих строительных смесей, керамическая промышленность, химическая промышленность, горнодобывающая промышленность.

Список литературы

- 1. Иванов М.Н. Детали машин: учеб. для студентов высш. техн. учеб. заведений / М.Н. Иванов. 5-е изд., перераб. М.: Высш. шк., 1991. 383 с.
- 2. Авторское свидетельство СССР № 153757, кл, В 02 С 17/08,1987 «Планетарная мельница периодического действия». Апачиди Н.К., Вигандт И.А., Ковтуненко В.В. Производственно-издательский «патент». г. Ужгород, ул. Гагарина, 101.
- 3. Даненова Г.Т., Коккоз М.М., Токарев А.С. Исследование контактных напряжений в конструкции планетарной мельницы // Труды Международной конференции «Будущие исследования 2013». Болгария. София. 2013. Том 28. С.20-23.