Показатели	n	M + m, мг/л	ди	Размах колебаний (Min–Max)	ПДК мг/л	Кратность к ПДК
Марганец	12	0,02 + 0,01	0,002:0,05	0,000-0,096	0,1	0,2
Кадмий	17	0,0006 + 0,0001	0,0004:0,001	0,000-0,001	0,001	0,65
Свинец	17	0,004 + 0,00009	0,0039:0,004	0,003-0,005	0,03	0,1
Ртуть	17	0,00002 + 0,00001	0,0001:0,00005	0,0001-0,0001	0,0005	0,05
Селен	17	0,002 + 0,0002	0,002:0,003	0,001-0,003	0,01	0,23
Ванадий	17	0,001 + 0,0000	_	0,001-0,001	0,1	0,01
Никель	14	$0,011 \pm 0,002$	0,007:0,02	0,0001-0,03	0,02	0,6
Железо	14	0.1 ± 0.02	0,06:0,1	0,011-0,26	0,3	0,34
Цинк	14	$0,02 \pm 0,004$	0,011:0,03	0,005-0,05	5	0,004
Кобальт	14	0.04 ± 0.001	0,034:0,04	0,025-0,044	0,1	0,37
ПАВ	19	0,08 + 0,003	0,07:0,085	0,05-0,09	0,5	0,16
Нитраты	19	50,73 + 8,6	32,5:68,9	3,08-101,0	45	1,1
Фосфаты	12	0,05 + 0,008	0,03:0,07	0,01-0,13	3,5	0,014
Хлориды	11	179,3 + 53,2	60,7:297,8	43,3–564,7	350	0,5
Сульфаты	19	135,9 + 20,3	93,1:178,6	68,0–372	500	0,3
Медь	14	0.3 ± 0.03	0,3:0,4	0,2-0,6	1,0	0,3
Хром	14	0.04 ± 0.008	0,02:0,06	0,002-0,1	0,05	0,8

Оценка уровня загрязнения питьевой воды п. Шиели металлами и неметаллами в теплый период года

 Π р и м е ч а н и е . ДИ – доверительные интервалы [– 95 %:+ 95 %].

Список литературы

1. URL: https://ru.wikipedia.org/wiki/Шиели_%28Кызылординская_область.

«Рациональное использование природных биологических ресурсов», Италия (Рим), 11–18 апреля 2015 г.

Технические науки

МУКА ИЗ ЖМЫХА ЗАРОДЫШЕЙ ПШЕНИЦЫ – ПЕРСПЕКТИВНОЕ СЫРЬЕ ДЛЯ ПРОИЗВОДСТВА ХЛЕБОБУЛОЧНЫХ ИЗДЕЛИЙ

Пономарева Е.И., Алехина Н.Н., Бакаева И.А., Быковская И.С.

ФГБОУ ВПО «Воронежский государственный университет инженерных технологий», Воронеж, e-mail: irina losevo@mail.ru

В современной науке о питании для обогащения пищевых продуктов большое предпочтение отдается сырью натурального происхождения, к которому относится зародыши пшеницы. В технологии хлебобулочных изделий широко используются продукты его переработки: масло, хлопья, жмых и мука из жмыха.

Для обоснования выбора муки из жмыха пшеничных зародышей в качестве обогатителя зернового хлеба была проведена сравнительная оценка химического и аминокислотного состава биоактивированного зерна пшеницы и муки из жмыха пшеничных зародышей.

Установлено, что содержание белка в муке из жмыха зародышей пшеницы в 2,8 раза больше, чем в биоактивированном зерне, а пищевых волокон – в 1,4 раза.

Выявлено, что в муке из жмыха зародышей пшеницы кальция содержалось больше в 1,5 раза, магния — 2,7 раза и фосфора — 3,6 раза, чем в биоактивированной пшенице. Мука из зародышей пшеницы отличалась высоким содержанием цинка (25,1 мг/100 г) по сравнению с биоактивированной пшеницей (2,7 мг/100 г).

Однако, максимальное содержание витаминов: тиамина, рибофлавина, токоферола наблюдалось в биоактивированном зерне пшеницы.

Анализ аминокислотного состава данных видов сырья показал, что биологическая ценность белка (77,4%) и аминокислотный скор по лизину (100,3%) в муке из жмыха зародышей пшеницы были выше на 12,0% и 40,5%, по сравнению с биологической ценностью и аминокислотным скором по лизину в биоактивированной пшенице. По содержанию лейцина, триптофана, фенилаланина и тирозина биоактивированная пшеница превосходила муку из жмыха зародышей пшеницы.

Таким образом, использование муки из жмыха пшеничных зародышей в технологии хлеба обеспечит содержание в продукте ценных биологически активных веществ и позволит рационально использовать вторичные ресурсы мукомольной промышленности.