УДК 54:630.8:664

ИССЛЕДОВАНИЕ И ИДЕНТИФИКАЦИЯ ПЕКТИНОВЫХ ВЕЩЕСТВ ВЫДЕЛЕННЫХ ИЗ КЛУБНЕЙ ТОПИНАМБУРА

Изтелеу Б.М., Азимбаева Г.Н., Кудайбергенова Г.Н., Бутин Б.М.

Казахский государственный женский педагогический университет, Алматы, e-mail: bakshat 83@mail.ru

В статье приведены сведения о идентификация выделенных пектиновых веществ из топинамбура (Helianthus tuberosuse) физико-химическими методами.

Ключевые слова: топинамбур, пектиновые вещества, полисахарид, идентификация

RESEARCH AND IDENTIFICATION OF PECTINS ISOLATED FROM TUBERS OF HELIANTHUS TUBEROSUSE

Izteleu B.M., Azimbaeva G.N., Kudaybergenova G.N., Butin B.M.

Kazakh State Women's Teacher university, Almaty, e-mail: bakshat 83@mail.ru

The article presents information on identification of the isolated pectin substances of Helianthus tuberosuse physico-chemical methods.

Keywords: Helianthus tuberosuse, pectin, a polysaccharide, identification

Среди разнообразия нетрадиционных видов растений одним из перспективных для хозяйственного использования является топинамбур. Возрождение интереса к данной культуре связано с появлением новых аспектов его использования, в том числе в качестве основного сырья для пектиновых производств.

По мнению отечественных и зарубежных специалистов топинамбур является одним из самых дешевых видов сырья для пищевой промышлености, топинамбур характеризующий полноценным биохимическим составом с преобладанием в клубнях углеводов, в первую очередь инулин и пектиновых веществ [1].

Пектиновые вещества — это группа высокомолекулярных соединений, входящих в состав клеточных стенок и промежуточного вещества высших растений. Максимальное количество пектинов содержится в плодах и корнеплодах. В пищевой промышленности пектины получают из яблочного жмыха, свеклы, корзинок подсолнечника или кожуры цитрусовых.

Пектины применяются при переработке плодов и ягод в кондитером производстве джема, желе, фруктово-желейных масс и начинок, блогодаря высоким структурообразующим свойствам, а также способности их поддерживать натуральные фруктовые ароматизирующие свойства сырья. В кондитерском промышленности пектины используются при производстве желейного мармелада, начинок для шоколадных конфет и карамели, а также зефира, пастилы. В молочной промышленности пектины применяются в производстве фруктово-желейных начинок для кисломолочных продуктов и в качестве стабилизаторов кисломолочных напитков (йогуртов), фруктово-молочных десертов, полуфабрикатов для молочных коктейлей [2,3].

Как известно пектин и пектиновые препараты применялись в Европе в качестве домашнего лекарства при лечении поносов и дизентерий в течении нескольких столетий.

Комплексообразующая способность основана на взаимодействии молекулы пектина с ионами тяжелых металлов и радионуклейдов. Благодаря наличию в молекулах большого количества свободных карбоксильных групп именно низкоэтерифицированные пектины проявляют наибольшую эффективность. Специальные препараты, содержащие комплексы высоко- и низкоэтерифицированных пектинов, включают в рацион питания лиц, находящихся в среде, загрязненной радионуклейдами, и имеющих контакт с тяжелыми металлами. Специальные высокоочищенные пектины могут быть отнесены к незаменимому веществу для использования в производстве функциональных пищевых продуктов, а также продуктов здорового и специального (профилактического и лечебного) питания. Оптимальная профилактическая дозировка специального пектина составляет 5-8 г в сутки, а в условиях радиоактивного загрязнения – не менее 15-16.

Сухие яблочные препараты дают лучшие результаты, чем сырые яблоки, как например препараты применяющиеся в Германии. Для тех же целей применяются следующие комбинацмии: пектин — агар, каолин — пектин,. Эффективность пектинат никеля — сухая яблочная пульпа обусловлена также бактерицидным действием никеля.

Производство пектина – динамически развивающийся бизнес с ежегодным увеличением производства на 3-4 %. Мировое производство и рынок пектина сосредоточено в Европе (Германия, Швейцария и др.), Южной Америке (Аргентина, Бразилия), Южной Африке, Китае, Иране и др. Объём производства составляет приблизительно 28-30 тыс. т в год. На долю пектина из цитрусовых культур приходится до 70 % и на долю яблочных пектинов – до 30 %. Ведущими мировыми производителями этого продукта являются компании Herbstreith & Fox, Cargill, Danisco, CP Kelco, Yantai Andre Pectin. Крупнейшее предприятие «Kopenhagen pectin fabric» (Дания) вырабатывает около 20 типов пектинов с торговой маркой «GENU» для различных областей пищевой промышленности.

Яблочный пектин производится в основном в Англии, Франции, Австрии, Швейцарии, Германии, Мексике, Италии. Крупнейшими фирмами по выработке пектина из сушеных яблочных выжимок является «Grill & Grossman», «Grinstedt», «Cesalpina». Стоимость пектина составляет примерно 8 – 14 долл. США за 1 кг.

В Казахстане производство пектиновых промышленности нет. Поскольку пектиновые вещества производятся только в зарубежных странах. Поэтому в Казахстане средная цена за кг пектина довольно высока ≈ 333\$ США. Что свидетельствует о необходимости налодить производство пектина в республике [4].

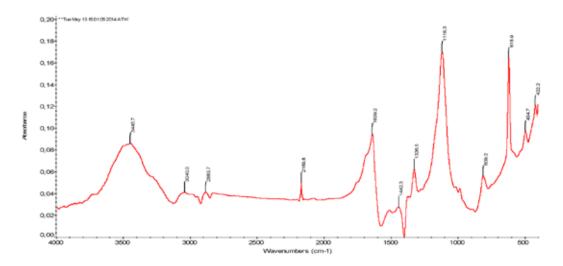
Цель работы. Исследование и идентификация пектиновых веществ выделенных из клубней топинамбура.

Объекты исследования. Объектам исследования является клубни топинамбура сорта "Интерес" из Алматнской области Карасайского района и Южно-Казахстанской области Мактааральского района, отобранные в конце октября и в середине ноября 2011-2013 гг.

Ранее нами было изучено полный химический состав топинамбура, приведенный в работе [5]. Разработана схема получения пектиновых веществ из топинамбура, а также проведен идентификация пектиновых веществ физико-химическими методами.

Экспериментальная часть. Для выделения водорастворимых полисахаридных комплексов использовали измелченный порошок клубней топинамбура. 100 г сухого порошка сырья экстрагировали горячим 80% этиловым спиртом, в течение 30 минут. Повторное извлечение полисахаридов проводили дважды при соотоношении сырьеэкстрагент 1:10. Растительный материал отделяли центрифугированием, а объединеннные экстракты упаривали до 1/5 первоначального объема. Из остатка растительного сырья выделяли пектиновые вещества. Экстракцию сырья проводили смесью 0,5% растворов щавелевой кислоты и оксалата аммония (1:1) в соотношении 1:20 при 80-85°C в течение 2 часов. Полученное экстракций сырье отфильтровывали, затем объедененные экстракты концентрировали и осаждали пятикратным объемом 96% этилового спирта. Осадок экстракта отделяли центрифугированием, а осадок пектиновых веществ высушивали и взвешивали. Чтобы очистить их от примесей промывали 80% этиловым спиртом, высушивали и взвешивали [6].

Выход полученных пектиновых веществ в Карасайском районе составляет 17-18%, а в Мактааральском районе 20%. Проведено идентификация выделенных пектиновых веществ из топинамбура (Helianthus tuberosuse) физико-химическими методами.


 Таблица 1

 Микроанализ выделенных пектиновых веществ из клубней топинамбура

No	Наименова- ние сырья	Вы- ход, %	Т _{плав} °С	Рассчитано, %			Формула Брутто	Найдено, %		
				C	Н	О	Брутто	C	Н	О
1	Карасай- ский район	18	190	27,3	43,5	29,2	$C_{14}H_{21}O_{12}$	28	42	24
2	Мактаараль ский район	20	220	28,5	44,2	27,3	$C_{14}H_{21}O_{12}$	28	42	24

Выделенные пектиновые вещества из клубней топинамбура (табл. 1) соответсвуют формуле Ходнева $C_{14}H_{21}O_{12}$. Эти пектиновые вещества представляют собой светло-коричневые аморфные кристалы. Кроме того определены температура их плавления на электронно-нагревательном аппарате «Boetius». Температура плавления выделенных пектиновых веществ из клубней топинамбура отобранного

Карасайском районе составляет 190° С, а из Макатааральского района составляет 220° С. Для идентификации выделенных пектиновых веществ использованы элементный микроанализ, сняты ИК-спектры на ИК-Фурье спектометре марки Impact 410 «Nicolet» в области 400-4000 см⁻¹ в таблетках КВг. А также были сняты ЯМР спектры 1 Н и 13 С. Данные результаты приведены в рис. 5-8.

Puc. 1. ИК-спектры выделенных пектиновых веществ из клубней топинамбура Алматинской области Карасайского района

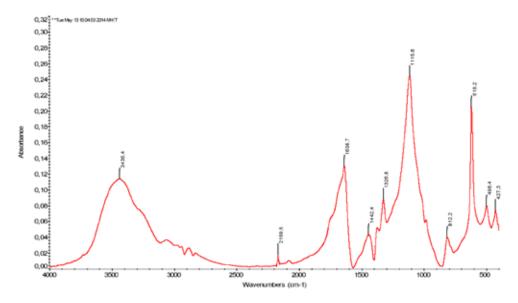


Рис. 2. ИК-спектры выделенных пектиновых веществ из клубней топинамбура Южно-Казахстанской области Мактааральского района

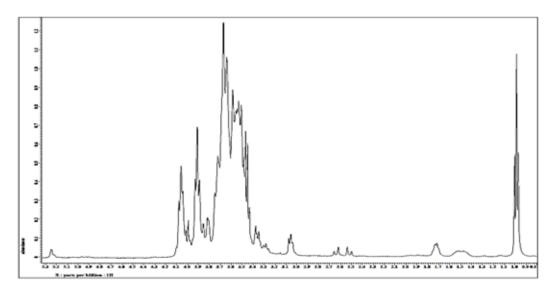


Рис. 3. ЯМР ¹Н спектр полученных пектиновых веществ из клубни топинамбура Алматинской области Карасайского района

В протонном спектре образца в области сильного поля (δ =0,97-1,01; δ =1,47-1,73 м.д.) наблюдается проявление сигналов СН-груп, находящихся в положении 4. Протоны атома углерода положения 1 пиранозного цикла резонируют при 3,94-3,38 м.д. Химические сдвиги 3,43-3,59 м.д. относятся к протонам углерода в положении 2 и 3 галактопиранозилуронового фрагмента. Протон углерода, непосредственно связанной с карбоксильной группой резонирует

в области слабого поля (δ = 5,22-5,24 м.д.). Для метоксильной и карбоксильной групп свойственно проявление сигналов при 3,67 и 3,91 м.д. соответственно.

Данные ИК-спектроскопии позволил сделать заключение о том, что вещества полученные из двух районов клубней топинамбура описываются следующими полосами поглащения: 3460, 2460, 1740, 1640, 1443-1367 и 1200-1000 см⁻¹, которые схожи со спектрами известных свекловичных пектинов [7, 8].

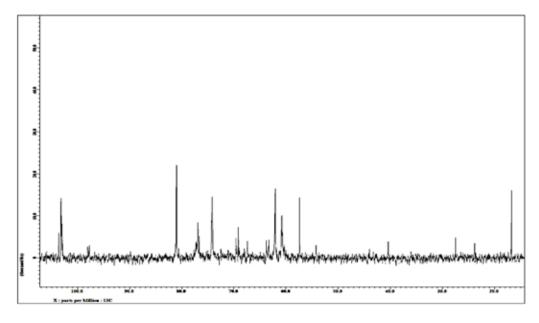


Рис. 4. ЯМР ¹³С спектр полученных пектиновых веществ из клубни топинамбура Алматинской области Карасайского района

Анализ спектра ЯМР на ядрах 13 С показал наличие следующих групп в структуре: карбоксильной (δ =103,03-103,64 м.д.), метоксильной (δ =57,40 м.д.) и метиновой. Атомы углерода, находящиеся в положении 1 пиранозного фрагмента, дают сигнал в области сильного поля при 63,78; 72,50; 77,65 м.д. Для второго и третьего атомов С характерно проявление сигнала при 81,01 и 67,47; 76,92 м.д. Углерод положения 4, участвующий в соединении пиранозных фрагментов кислородным мостиком, резонирует при 44,05; 40,44 м.д. Под влиянием карбоксильных и метоксильных групп химический сдвиг пятого атома С галактопиранозилуронового звена равен 63,80; 74,19 м.д.

В протонном спектре образца в обсильного поля $(\delta=0.98-1.02;$ δ =1,43-1,77 м.д.) наблюдается проявле-СН-групп, находящихся ние сигналов в положении 4. Протоны атома углерода положения 1 пиранозного цикла резонируют при 3,51 м.д. Химические сдвиги 3,36 и 3,92 м.д. относятся к протонам углерода в положении 2 и 3 галактопиранозилуронового фрагмента. Протон углерода, непосредственно связанной с карбоксильной группой резонирует в области слабого поля (δ = 4,67-5,07 м.д.). Для метоксильной и карбоксильной групп свойственно проявление сигналов при 3,60 и 3,86 м.д. соответственно.

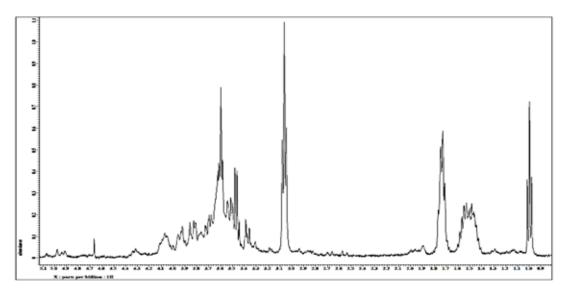


Рис. 5. ЯМР ¹Н спектр полученных пектиновых веществ из клубни топинамбура Южно-Казахстанской области Мактааральского района

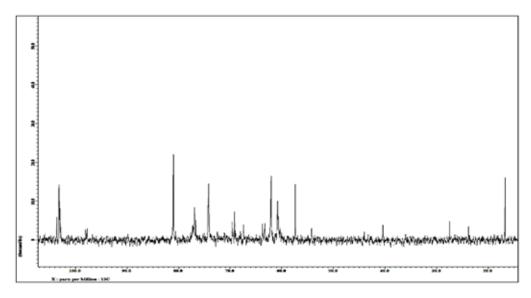


Рис. 6. ЯМР ¹³С спектр полученных пектиновых веществ из клубни топинамбура Южно-Казахстанской области Мактааральского района

Анализ спектра ЯМР на ядрах ¹³С показал наличие следующих групп в структуре: карбоксильной (δ = 97,77-98,05; 103,03-103,64 м.д.), метоксильной (δ =57,40 м.д.) и метиновых групп. Атомы углерода, находящиеся в положении 1 пиранозного фрагмента, дают сигнал в области сильного поля при 63,78; 72,50; 77,65 м.д. Для второго и третьего атомов С характерно проявление при 77,33; 81,01 и 76,92 м.д. Углерод положения 4, участвующий в соединении пиранозных фрагментов кислородным мостиком, резонирует при 44,05; 40,44 м.д. Под влиянием карбоксильных и метоксильных групп химический сдвиг пятого атома С галактопиранозилуронового звена равен 63,80; 74,19 м.д. [9,10].

Выводы

- 1. Выход полученных пектиновых веществ в Карасайском районе составляет 17–18%, а в Мактааральском районе составляет 20%.
- 2. Проведено идентификация выделенных пектиновых веществ из топинамбура (Helianthus tuberosuse) физико-химическими методами (элементный анализ, ИКспектроскопия, ЯМР-спектроскопия).

Список литертуры

- 1. Топинамбур.http/www/aif.Ru7/ online/helth/417/10.01/
- 2. Чечеткин Д.В. Исследование фруктозано-пектиназного комплекса топинамбура и изменений в нем при получении осветвленного сусла: дисс. ... канд. техн. наук. М., 2006. С. 127.
- 3. Злобин А.А. Строение и свойства пектинов плодов шиповника орщинистого и рябины обыкновенной (семейство гозасеае): Автореферат дисс. ... канд. хим. наук. Киров-Сыктывкар, 2012.
- 4. Донченко Л.В. Технология пектина и пектинопродуктов. М., Дели, 2002. C.11-12.
- 5. Изтелеу Б.М., Азимбаева Г.Е., Құдайбергенова Г.Н. опинамбурдың жер үсті бөлігінің құрамындағы биологиялық активті заттарды анықтау // Химический журнал Казахстана. 2013
- 6. Дроздова И.Л. Выделение и химические изучение полисахаридов травы донника рослого // Вестник ВГУ. Серия Химия. Биология. Фармация. 2004. №1. С.173-175
- 7. Ярова Е.В. Разработка способов интенсификации процессов извлечения пектиновых веществ из свекловичного жома: дисс. ... канд. техн. наук. К., 1991. С.225.
- 8. Никитина В.С., Гайнанова Л.Т., Абдуллина М.И., Беспалова А.А. Пектиновые вещества корней лопуха обыкновенного Arctium lappa L. И корней одуванчика лекарственного Тагахасиm officiale wig // Химия растительного сырья. -2012. -№2. -C.21-26
- 9. Marcon M.V., Carneiro P.I.B., Wosiacki G., Beleski-Carneiro E. // Ann. Magn.Reson. 2005. Vol. 4, Issue 3. P. 56–63.
- 10. Wang X.-S., Dong Q., Zuo J.-P., Fang J.-N. Structure and potential immunjlogical activite of a pectin from Centella asiatica (L.) Urban // Carbohyd. Research. 2003. Vol. 338. P. 2393–2402.