«Приоритетные направления развития науки, технологий и техники», Италия (Рим), 9–16 апреля 2017 г.

Технические науки

ГАЗОИМПУЛЬСНАЯ ОБРАБОТКА МЕДНЫХ И ЦИНКОВЫХ СПЛАВОВ

Иванов Д.А.

Санкт-Петербургский государственный университет гражданской авиации, Санкт-Петербург;

Санкт-Петербургский государственный экономический университет, Санкт-Петербург, e-mail: tm 06@mail.ru

Деформационное упрочнение медных сплавов зачастую приводит к коррозионному растрескиванию, что особенно характерно для латуней, содержащих более 20% меди. То же наблюдается у деталей из подобных сплавов при наличии значительных остаточных напряжений.

Поэтому представляют значительный интерес альтернативные способы упрочнения деталей из медных сплавов, в частности, газоимпульсная обработка [1–8].

Для пластин из холоднокатаной латуни Л68 применялся обдув пульсирующим дозвуковым воздушным потоком, имеющим скорость 26 м/с, частоту 2100 Гц и звуковое давление 140 дБ, без нагрева в течение 10 мин. Повышение механических свойств в сравнении с необработанной (контрольной) пластиной выразилось в повышении прочности, пластичности и ударной вязкости. Таким образом, установлено, что газоимпульсная обработка при данных амплитудно-частотных характеристиках обеспечивает повышение механических свойств тонколистового проката из сплавов на основе меди, не подвергаемых термоупрочнению.

При исследования влияния газоимпульсной обработки на механические и эксплуатационные свойства сплавов на основе цинка был использован крепеж из цинкового сплава ЦА4. Обдув пульсирующим воздушным потоком осуществлялся в течение 15 минут при частоте пульсаций порядка 1130 Гц и звуковом давлении до 120 дБ при расположении изделия как поперёк, так и вдоль пульсирующего газового потока

и без использования предварительного нагрева. В ходе испытаний обработанных подобным образом изделий разрушающая нагрузка при изгибе на 16,7% выше чем у необдутых. Изломы показывают рост пластичности в результате газоимпульсной обработки.

При испытании на динамический изгиб образцов из ЦА4 обработанных пульсирующим газовам потоком при тех же режимах, и направлении обдува, совпадающем с направлением удара маятника копра, значение КСU необдутого образца составило 0,041 МДж/м², а для образца, обработанного пульсирующим воздушным потоком — 0,083 МДж/м², что более чем вдвое больше.

Таким образом представляется перспективной газоимпульсная обработка деталей машин и приборов, а также крепежа, изготавливаемых из медных и цинковых сплавов с целью повышения их эксплуатационных свойств.

Список литературы

- 1. Воробьева Г.А., Иванов Д.А., Сизов А.М. Упрочнение легированных сталей термоимпульсной обработкой // Технология металлов. 1998. № 2. С. 6–8.
- 2. Иванов Д.А. Влияние дозвукового пульсирующего водовоздушного потока на напряженное состояние сталей при термообработке // Технико-технологические проблемы сервиса. 2007. N $\!_{2}$ 1. C. 97—100.
- 3. Иванов Д.А. Закалка сталей, алюминиевых и титановых сплавов в пульсирующем дозвуковом водовоздушном потоке // Технико-технологические проблемы сервиса. $2008.-N_{\rm 2}$ 2. C. 57–61.
- 4. Иванов Д.А., Засухин О.Н. Обработка пульсирующим газовым потоком высокопрочных и пружинных сталей // Двигателестроение. -2014. -№ 3. -C. 34–36.
- 5. Иванов Д.А., Засухин О.Н. Сочетание закалки сталей с обработкой пульсирующими газовыми потоками // Двигателестроение. -2015. -№4. -C. 34–36.
- 6. Иванов Д.А., Засухин О.Н. Использование пульсирующего дозвукового газового потока для повышения эксплуатационных свойств металлических изделий // Технология металлов. -2015. -№ 1. C. 34–38.
- 7. Иванов Д.А., Засухин О.Н. Повышение коррозионной стойкости конструкционных сталей газоимпульсной обработкой // Технология металлов. 2015.
- 8. Иванов Д.А., Засухин О.Н. Обработка инструментальных сталей пульсирующими газовыми потоками // Технология металлов. 2016. N9. C. 39–43.

Физико-математические науки

РЕШЕНИЕ УРАВНЕНИЙ НА ОСНОВЕ СВОЙСТВА ВЫПУКЛОСТИ ФУНКЦИИ

Далингер В.А.

Омский государственный педагогический университет, Омск, e-mail: dalinger@omgpu.ru

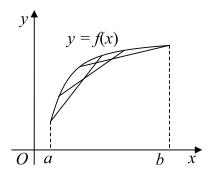
В данной статье мы рассмотрим уравнение вида

$$pf(u)+qf(v)=f(u_1+qf(v_1),$$

где p,q>0, p+q=1, u,v, u_1,v_1 — функции относительно искомого неизвестного x;f — некоторая функция.

Для решения таких уравнений надо будет использовать понятия функции выпуклой на промежутке l и функции вогнутой на промежутке l.

Выпуклая функция — функция, графиком которой является выпуклая кривая. Выпуклая функция может быть выпуклой вверх (рис. 1) или выпуклой вниз (рис. 2). Иногда выпуклой называют только функцию, выпуклую вверх, а функцию, выпуклую вниз — вогнутой функцией.



Puc. 1

Функция f(x) называется выпуклой вверх (вниз) на отрезке [a,b], если кажется дуга графика этой функции лежит не ниже (не выше) стягивающей ее хорды.

Более обстоятельно это определение выглядит так [3].

Определение 1. Пусть y = l(x) – уравнение прямой, проходящей через точки $A(x_1; f(x_1))$ и $B(x_2; f(x_2))$. Если $f(x) \ge l(x) (f(x) \le l(x))$ при $x_1 \le x \le x_2$, где x_1 и x_2 – любые точки на отрезке [a,b], то f(x) выпукла вверх (вниз). При этом если f(x) > l(x) (f(x) < l(x)) при $x_1 < x < x_2$, то f(x) называется строго выпуклой вверх (вниз).

Из математического анализа известно, что функция непрерывная на отрезке [a,b] и дважды дифференцируемая на интервале (a,b), является выпуклой вверх (вниз), тогда и только тогда, когда f " $(x) \le 0$ (f " $(x) \ge 0)$ на этом интервале.

Функцию на выпуклость и вогнутость исследуют с помощью второй производной, но в ряде случаев это можно сделать элементарными методами.

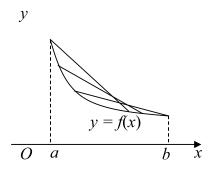
Условие выпуклости и вогнутости графика функции заключается в следующем. Пусть функция y=f(x) определена на отрезке [a;b] и график функции на этом отрезке выпуклый (рис. 3). Возьмем на отрезке [a;b] два любых значения аргумента x_1 и x_2 ($x_1 < x_2$). Тогда значениями ординат точек A и B графика функции соответственно будут $f(x_1)$ и $f(x_2)$. Посредине между точками x_1 и x_2 возьмем точку

$$x_0 = \frac{x_1 + x_2}{2} \ .$$

Тогда

$$f(x_0) = f\left(\frac{x_1 + x_2}{2}\right).$$

Так как по условию график функции выпуклый, то для любых значений x_1 и x_2 из отрезка [a;b] точка графика функции C должна лежать



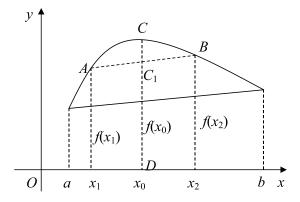
Puc. 2

выше точки C_1 хорды AB, то есть $DC > DC_1$. Из трапеции Ax_1x_2B находим ее среднюю линию

$$C_1 D = \frac{f(x_1) + f(x_2)}{2}.$$

Таким образом, если график функции y = f(x) выпуклый на отрезке [a; b], то для любых двух значений аргумента x_1 и x_2 из этого отрезка должно выполняться неравенство

$$f\left(\frac{x_1 + x_2}{2}\right) > \frac{f\left(x_1\right) + f\left(x_2\right)}{2}.\tag{1}$$



Puc. 3

Аналогично можно показать, что если график функции y=f(x) вогнутый на отрезке [a;b], то для любых значений x_1 и x_2 из этого отрезка выполняется неравенство

$$f\left(\frac{x_1 + x_2}{2}\right) < \frac{f\left(x_1\right) + f\left(x_2\right)}{2}.$$
 (2)

Справедливо и обратное утверждение: если для функции y = f(x), определенной на отрезке [a;b], при всех значениях x_1, x_2 из этого отрезка выполняется неравенство (1), то график функции на этом отрезке выпуклый, а если выполняется неравенство (2), то график функции на этом отрезке вогнутый.

Неравенства (1) и (2) есть необходимое и достаточное условия выпуклости и вогнутости графика функции.

Дадим несколько другой подход к понятию выпуклой функции [1, 2].

Определение 2. Функция f называется выпуклой на промежутке l (l – произвольный промежуток на Ox) если для любого отрезка [a,b], принадлежащего l, и любого числа λ , $\lambda \in (0,1)$, выполняется неравенство

$$f(\lambda a + (1 - \lambda b)) < \lambda f(a) + (1 - \lambda f(b))$$
. (*)

Определение 3. Функция f называется вогнутой на промежутке l, если для любого отрезка [a,b], принадлежащего l, и любого числа λ , $\lambda \in (0,1)$, выполняется неравенство

$$f(\lambda a + (1 - \lambda b)) > \lambda f(a) + (1 - \lambda f(b))$$
. (**)

Неравенства (*) и (**) называются неравенствами Иенсена. Известен критерий выпуклости функции на промежутке [1]:

Теорема 1. Функция f(x) является выпуклой на промежутке l тогда и только тогда, когда для любых $u,v,u_1,v_1\in l,u< u_1< v_1< v$ и любых p,q(p,q>0,p+q=1), таких, что $pu+qv=pu_1+qv_1$, выполняется неравество

$$pf(u_1) + qf(v_1) < pf(u) + qf(v)$$
. (***)

Теорема 2. Если функции f и q являются выпуклыми на промежутке l числовой прямой, то на этом промежутке их сумма f+q также выпукла.

Теорема 3. Если в уравнении

$$pf(u) + qf(v) = pf(u_1) + qf(v_1)$$

функция f(x) является строго выпуклой вверх или строго вогнутой вниз на промежутке X, функции

$$u = u(x), v = v(x), u_1 = u_1(x), v_1 == v_1(x),$$

такие, что при всех x из области определения уравнения (D) их значения содержатся в X и выполняется условие $pu+qv=pu_1+qv_1$, то заданное уравнение на множестве

$$D_{1} = D \cap \{x; u(x) \le v(x); u_{1}(x) \le v_{1}(x)\}$$

равносильно уравнению

$$u(x) = u_1(x)$$
.

Задача. Найдите неположительные корни уравнения

$$\sqrt[10]{7+x} + 2\sqrt[1]{\frac{11}{2} - \frac{1}{2}x} = \sqrt[10]{2} + 2\sqrt[10]{8} .$$

Решение

Областью определения заданного уравнения является решение системы

$$\begin{cases} 7 + x \ge 0 \\ \frac{11}{2} - \frac{1}{2} x \ge 0 \end{cases}$$

то есть промежуток [-7;11].

Разделив обе части заданного уравнения на 3 (сумму коэффициентов при радикалах левой или правой частей уравнения), перепишем его в виде

$$\frac{1}{3}\sqrt[10]{7+x} + \frac{2}{3}\sqrt[10]{\frac{11}{2} - \frac{1}{2}x} = \frac{1}{3}\sqrt[10]{2} + \frac{2}{3}\sqrt[10]{8}.$$

Это уравнение имеет вид

$$pf(u)+qf(v)=pf(u_1)+qf(v_1)$$
,

где p, q > 0, p + q = 1, при этом

$$f(x) = \sqrt[10]{x}, p = \frac{1}{3}, q = \frac{2}{3}, u = \frac{11}{2} - \frac{1}{2}x,$$
$$v = 7 + x, u_1 = 2, v_1 = 8.$$

Функция f(x) является строго выпуклой вверх на неположительной части числовой прямой. Действительно это так, потому что выполняется условие, отмеченное в теореме 1:

$$\frac{1}{3}(7+x) + \frac{2}{3}\left(\frac{11}{2} - \frac{1}{2}x\right) = \frac{1}{3} \cdot 2 + \frac{2}{3} \cdot 8 \qquad (3)$$

$$\frac{7}{3} + \frac{1}{3}x + \frac{22}{6} - \frac{2}{6}x = \frac{2}{3} + \frac{16}{3}$$

$$\frac{14+2x+22-2x}{6} = \frac{18}{6}, 6 = 6.$$

Множество D_1 , фигурирующее в теореме 3, для уравнения (3) есть множество [-7;0].

Таким образом, на отрезке [-7;0] исходное уравнение равносильно уравнению

$$\frac{11}{2} - \frac{1}{2}x = 8$$
, откуда $x = -5$.

Следовательно, найденный корень единственный искомый отрицательный корень исходного уравнения.

Проверка показывает, что x = -5 действительно является корнем исходного уравнения.

При x = -5 имеем:

$$\sqrt[10]{7-5} + 2\sqrt[10]{\frac{11}{2} + \frac{5}{2}} = \sqrt[10]{2} + 2\sqrt[10]{8} \ ,$$

$$\sqrt[10]{2} + 2\sqrt[10]{8} = \sqrt[10]{2} + 2\sqrt[10]{8}$$

Для самостоятельного решения предлагаем задачи, заимствованные из работы [1].

Задача. Решите уравнение

$$2^{x^2} + 2^{3x-2} = 4^{x^2-1} + 2^{3x-x^2} \cdot$$

Ответ:

$$x = 0, x = \frac{3}{2}, x = \pm \sqrt{2}$$
.

Задача. Найдите неотрицательные корни уравнения

$$2\sqrt[4]{10+x} + 3\sqrt[4]{10 - \frac{2}{3}x} = 3\sqrt[4]{2} + 2\sqrt[4]{22} .$$

Ответ: x = 12.

Задача. Найдите неположительные корни уравнения

$$2\sqrt[4]{10+x} + 3\sqrt[4]{10 - \frac{2}{3}x} = 8.$$

Otbet: x = -9.

Задача. Решите уравнение

$$\sqrt[4]{1-x} + 2\sqrt[4]{2-x} = 2\sqrt[4]{2,5-1,5x}$$
.

Ответ: x = 1

Задача. Решите уравнение

$$2\sqrt[4]{x+15} = 6 - \sqrt[4]{18-2x}$$
.

Ответ: x = 1.

Задача. Решите уравнение

$$\sqrt[5]{1 - \sqrt{1 - x^2}} + 2\sqrt[5]{1 + \sqrt{1 - x^2}} - \sqrt[10]{1 - x^2} = 2\sqrt[5]{\frac{3}{2}}.$$

Ответ:

$$x = \pm \frac{\sqrt{3}}{2} .$$

Список литературы

- 1. Калинин С.И. Обучение студентов математическому анализу в целях фундаментализации высшего педагогического образования: монография. Киров: Изд-во ВятГПУ, 2008.-353 с.
- 2. Калинин С.И. О применении выпуклых функций в вопросе решения уравнений // Гуманитаризация среднего и высшего математического образования: состояние, перспективы (методическая подготовка учителя математики в педагогическом вузе в условиях фундаментализации образования: материалы всероссийской научной конференции, г. Саранск, 4 6 октября 2005 г. / под ред Г.И. Саранцева. Саранск: Изд-во МорГПИ, 2005. С. 179 180.
- 3. Математический энциклопедический словарь. М.: Научное изд-во «Большая российская энциклопедия», 1995. 847 с.
- 4. Чучаев И.И., Денисова Т.В. Выпуклые функции и уравнения // Математика в школе. 2005. № 5. С. 41 47.

Химические науки

ЭЛЕКТРОХИМИЧЕСКОЕ ПОЛУЧЕНИЕ НОВЫХ НАНОГИБРИДНЫХ СИСТЕМ НА ОСНОВЕ МНОГОСЛОЙНЫХ СТРУКТУР, ВКЛЮЧАЮЩИХ ПОДЛОЖКИ ИЗ РАЗЛИЧНЫХ МАТЕРИАЛОВ С НАНЕСЁННЫМИ НА НИХ ОКСИДАМИ И ОКСИДНЫМИ ВОЛЬФРАМОВЫМИ БРОНЗАМИ ТЕТРАГОНАЛЬНОЙ СТРУКТУРЫ

Вакарин С.В., Семерикова О.Л., Косов А.В., Панкратов А.А., Плаксин С.В., Зайков Ю.П.

Институт высокотемпературной электрохимии УрО РАН, Екатеринбург, e-mail: s.vakarin@ihte.uran.ru

Ранее электрохимическими методами был изучен механизм формирования отдельных слоев наногибридных систем, включающих подложки из Cu, Ni, Mo, Pt, W, C, Si с нанесенными на них оксидами и оксидными вольфрамовыми бронзами (ОВБ) гексагональной структуры [1,2].

В настоящей работе разработан электрохимический метод получения новых наногибридных систем на основе многослойных структур, включающих подложки из различных материалов с нанесенными на них оксидами и ОВБ тетрагональной структуры. Исследована кинетика осаждения ОВБ на различные подложки с целью определения механизма формирования гибридных наносистем.

Изучено влияние материала подложки, состава расплава, температуры, электрохимиче-

ских параметров на структуру и морфологию полученных систем.

На Pt подложке с целью оценки возможности использования полученных материалов установлены их термические свойства.

Электрохимическими методами исследован механизм формирования отдельных слоев наногибридных систем, включающих подложки из Cu, Ni, Mo, Pt, W, C, Si с нанесенными на них оксидами и ОВБ тетрагональной структуры. На каждом этапе формирования многослойной системы проведены исследования морфологии, состава и структуры.

Составы расплавов: $K_2WO_4-32,5$ мол%, $Na_2WO_4-32,5$ мол%, WO_3-35 мол%; K_2WO_4-25 мол%, Na_2WO_4-25 мол%, WO_3-50 мол%; $T=700^{\circ}\mathrm{C},750^{\circ}\mathrm{C}.$

Впервые электролизом получены нанокристаллические пленки ОВБ тетрагональной структуры на Pt(110) фольге. Показано, что при всех исследованных условиях на платиновой фольге образуется пленка ОВБ тетрагональной структуры, изоструктурная $Na_{0.2}WO_3$. Экспериментальные данные свидетельствуют о том, что монослой ОВБ формируется сразу после включения катодного потенциала, впоследствии скорость роста пленки уменьшается из-за увеличения ее сопротивления.

Установлено, что состав и морфология бронзы определяются, главным образом, потенциалом осаждения и концентрацией WO_3 в расплаве. Увеличение катодного потенциала при-